Abnormal expression of homeobox genes and transthyretin in C9ORF72 expansion carriers
暂无分享,去创建一个
Kevin F. Bieniek | L. Petrucelli | Y. Asmann | R. Petersen | B. Boeve | D. Knopman | M. Murray | D. Dickson | J. Parisi | M. Benatar | J. Wuu | M. Heckman | R. Bowser | N. Graff-Radford | Xue Wang | M. Baker | Jeannie Chew | K. Josephs | N. Finch | M. Dejesus-Hernandez | Karen R. Jansen-West | K. Boylan | Alexandra M. Nicholson | T. Gendron | Lillian M. Daughrity | M. van Blitterswijk | Patricia H. Brown | R. Rademakers | M. Dejesus‐Hernandez | Kevin F Bieniek
[1] D. Adams,et al. Familial amyloid polyneuropathy , 2017, Current opinion in neurology.
[2] L. Petrucelli,et al. Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72 , 2015, Acta Neuropathologica.
[3] Kevin F. Bieniek,et al. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers , 2015, Acta Neuropathologica.
[4] Bruce L. Miller,et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport , 2015, Nature.
[5] Sean J. Miller,et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.
[6] F. Gage,et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS , 2015, Nature Neuroscience.
[7] Christian A. Ross,et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.
[8] E. Kremmer,et al. Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing , 2015, Acta Neuropathologica.
[9] G. Duester,et al. Mechanisms of retinoic acid signalling and its roles in organ and limb development , 2015, Nature Reviews Molecular Cell Biology.
[10] P. Wright,et al. Mechanisms of Transthyretin Inhibition of β-Amyloid Aggregation In Vitro , 2013, The Journal of Neuroscience.
[11] J. Rothstein,et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.
[12] A. Isaacs,et al. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.
[13] E. Kremmer,et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.
[14] Kevin F. Bieniek,et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.
[15] L. Petrucelli,et al. Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2013, Acta Neuropathologica Communications.
[16] S. Lorenzl,et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.
[17] J. Dasen,et al. Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization , 2013, Neuron.
[18] L. Petrucelli,et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.
[19] E. Kremmer,et al. The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.
[20] Kevin F. Bieniek,et al. Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.
[21] Xinyi Li,et al. Transthyretin and the brain re-visited: Is neuronal synthesis of transthyretin protective in Alzheimer's disease? , 2011, Molecular Neurodegeneration.
[22] Bruce L. Miller,et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.
[23] David Heckerman,et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.
[24] E. Masliah,et al. Neuronal Production of Transthyretin in Human and Murine Alzheimer's Disease: Is It Protective? , 2011, The Journal of Neuroscience.
[25] A. Akinc,et al. CSF transthyretin neuroprotection in a mouse model of brain ischemia , 2010, Journal of neurochemistry.
[26] Merit Cudkowicz,et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics , 2010, Muscle & nerve.
[27] M. Pfeifle,et al. Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS) , 2010, Neuroscience Letters.
[28] C. E. Fleming,et al. Transthyretin: More than meets the eye , 2009, Progress in Neurobiology.
[29] U. Heinemann,et al. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. , 2008, Journal of Alzheimer's disease : JAD.
[30] C. E. Fleming,et al. Transthyretin enhances nerve regeneration , 2007, Journal of neurochemistry.
[31] Henrik Zetterberg,et al. Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF , 2005, Experimental Neurology.
[32] Vanathi Gopalakrishnan,et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis , 2005, Journal of neurochemistry.
[33] K. Blennow,et al. Validation of a prefractionation method followed by two-dimensional electrophoresis – Applied to cerebrospinal fluid proteins from frontotemporal dementia patients , 2004, Proteome Science.