Hitting probabilities of random covering sets in tori and metric spaces

We provide sharp lower and upper bounds for the Hausdorff dimension of the intersection of a typical random covering set with a fixed analytic set both in Ahlfors regular metric spaces and in the $d$-dimensional torus. In metric spaces, we consider covering sets generated by balls and, in the torus, we deal with general analytic generating sets.

[1]  S. Krantz Fractal geometry , 1989 .

[2]  J. Kahane Sur La Dimension Des Intersections , 1986 .

[3]  Metric Diophantine approximation and ‘ absolutely friendly ’ measures , 2008 .

[4]  Arnaud Durand On randomly placed arcs on the circle , 2010 .

[5]  Lior Fishman,et al.  The set of badly approximable vectors is strongly C1 incompressible , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Triple points of Brownian paths in 3-space , 1957 .

[7]  S. Janson Random coverings in several dimensions , 1986 .

[8]  Liang Zhang,et al.  Hausdorff dimension of limsup random fractals , 2013 .

[9]  M. Einsiedler,et al.  Diophantine Approximations on Fractals , 2009, 0908.2350.

[10]  A Dvoretzky,et al.  ON COVERING A CIRCLE BY RANDOMLY PLACED ARCS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Kahane Random Coverings and Multiplicative Processes , 2000 .

[12]  A note on the hitting probabilities of random covering sets , 2013, 1307.2819.

[13]  Jian Xu,et al.  The shrinking target problem in the dynamical system of continued fractions , 2014 .

[14]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[15]  J. Kahane Some Random Series of Functions , 1985 .

[16]  Barak Weiss,et al.  Almost no points on a Cantor set are very well approximable , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  A. Fan,et al.  Quantitative Uniform Hitting in Exponentially Mixing Systems , 2010 .

[18]  A. Dembo,et al.  Thick points for spatial Brownian motion: multifractal analysis of occupation measure , 2000 .

[19]  Erin P. J. Pearse,et al.  Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II , 2013 .

[20]  Bing Li,et al.  Hausdorff dimension of affine random covering sets in torus , 2012, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[21]  Stéphane Seuret,et al.  Diophantine approximation by orbits of expanding Markov maps , 2012, Ergodic Theory and Dynamical Systems.

[22]  A. Pollington,et al.  On a problem in simultaneous Diophantine approximation: Schmidt’s conjecture , 2010, 1001.2694.

[23]  J. Hawkes,et al.  Trees Generated by a Simple Branching Process , 1981 .

[24]  Kenneth Falconer,et al.  GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .

[25]  Karma Dajani,et al.  Equipartition of interval partitions and an application to number theory , 2001 .

[26]  P. Shmerkin,et al.  Spatially independent martingales, intersections, and applications , 2014, 1409.6707.

[27]  V. Beresnevich Rational points near manifolds and metric Diophantine approximation , 2009, 0904.0474.

[28]  Yimin Xiao,et al.  Hitting Probabilities of the Random Covering Sets , 2013 .

[29]  Claude Dellacherie Ensembles analytiques, capacités, mesures de Hausdorff , 1972 .

[30]  Ai-Hua Fan,et al.  A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation , 2013 .

[31]  Lior Fishman,et al.  Intrinsic approximation on Cantor-like sets, a problem of Mahler , 2011, 1106.0526.

[32]  Detta Dickinson Hausdorff measure and linear forms. , 1997 .

[33]  B. Rynne Hausdorff Dimension and Generalized Simultaneous Diophantine Approximation , 1998 .

[34]  Victor Beresnevich,et al.  A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures , 2004 .

[35]  Arnaud Durand,et al.  Metric Diophantine approximation on the middle-third Cantor set , 2013, 1305.6501.

[36]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[37]  David Preiss,et al.  On the existence of subsets of finite positive packing measure , 1995 .

[38]  P. Mattila Hausdorff dimension and capacities of intersections of sets inn-space , 1984 .

[39]  L. A. Shepp,et al.  Covering the line with random intervals , 1972 .

[40]  Jian Xu,et al.  Mass transference principle for limsup sets generated by rectangles , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  On a problem of K. Mahler: Diophantine approximation and Cantor sets , 2005, math/0505074.

[42]  Ville Suomala,et al.  Existence of doubling measures via generalised nested cubes , 2010, 1011.0683.

[43]  Glyn Harman,et al.  Metric number theory , 1998 .

[44]  John Hawkes,et al.  On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set , 1971 .

[45]  Y. Peres Intersection-equivalence of Brownian paths and certain branching processes , 1996 .

[46]  Sanju Velani,et al.  The ergodic theory of shrinking targets , 1995 .

[47]  L. Shepp Covering the circle with random ARCS , 1972 .

[48]  Arnaud Durand Sets with large intersection and ubiquity , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  How many intervals cover a point in Dvoretzky covering? , 2002 .

[50]  S. Orey,et al.  How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .

[51]  Y. Peres,et al.  Limsup Random Fractals , 2000 .

[52]  A. Kechris Classical descriptive set theory , 1987 .

[53]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  J. Kahane Recouvrements aléatoires et théorie du potentiel , 1990 .