UNITOR: Combining Syntactic and Semantic Kernels for Twitter Sentiment Analysis

In this paper, the UNITOR system participating in the SemEval-2013 Sentiment Analysis in Twitter task is presented. The polarity detection of a tweet is modeled as a classification task, tackled through a Multiple Kernel approach. It allows to combine the contribution of complex kernel functions, such as the Latent Semantic Kernel and Smoothed Partial Tree Kernel, to implicitly integrate syntactic and lexical information of annotated examples. In the challenge, UNITOR system achieves good results, even considering that no manual feature engineering is performed and no manually coded resources are employed. These kernels in-fact embed distributional models of lexical semantics to determine expressive generalization of tweets.

[1]  Roberto Basili,et al.  Tree Kernels for Semantic Role Labeling , 2008, CL.

[2]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[3]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[4]  Roberto Basili,et al.  Structured Lexical Similarity via Convolution Kernels on Dependency Trees , 2011, EMNLP.

[5]  Roberto Basili,et al.  Parsing engineering and empirical robustness , 2002, Natural Language Engineering.

[6]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[7]  Fabio Massimo Zanzotto,et al.  Linguistic Redundancy in Twitter , 2011, EMNLP.

[8]  Danilo Croce,et al.  Manifold Learning for the Semi-Supervised Induction of FrameNet Predicates: An Empirical Investigation , 2010 .

[9]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[10]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[11]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[12]  Katharina Morik,et al.  Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring , 1999, ICML.

[13]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[14]  Roberto Basili,et al.  Grammatical Feature Engineering for Fine-grained IR Tasks , 2012, IIR.

[15]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[16]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[17]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[18]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[19]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[20]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[21]  Albert Bifet,et al.  Sentiment Knowledge Discovery in Twitter Streaming Data , 2010, Discovery Science.

[22]  Sabine Buchholz,et al.  Introduction to the CoNLL-2000 Shared Task Chunking , 2000, CoNLL/LLL.

[23]  Josef van Genabith,et al.  #hardtoparse: POS Tagging and Parsing the Twitterverse , 2011, Analyzing Microtext.

[24]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[25]  Nello Cristianini,et al.  Latent Semantic Kernels , 2001, Journal of Intelligent Information Systems.