Approaches to quantum error correction

In a ground breaking discovery in 1994, Shor has shown that quantum computers, if built, can factor numbers efficiently. Since then quantum computing has become a burgeoning field of research, attracting theoreticians and experimentalists alike, and regrouping researchers from fields like computer science, physics, mathematics and engineering. Quantum information is very fragile and prone to decoherence. Yet by the middle of 1996 it has been shown that fault-tolerant quantum computation is possible. We give a simple description of the elements of quantum error-correction and quantum fault-tolerance. After characterizing quantum errors we present several error correction schemes and outline the elements of a full fledged fault-tolerant computation, which works error-free even though all of its components can be faulty. We also mention alternative approaches to error-correction, so called error-avoiding or decoherence-free schemes.

[1]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[5]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[6]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[7]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[9]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[10]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[11]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[12]  Patrice E. A. Turchi,et al.  Decoherence and its implications in quantum computation and information transfer , 2001 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Yu.,et al.  Quantum tunneling in a dissipative system. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  P. Zanardi,et al.  Are the Assumptions of Fault-Tolerant Quantum Error Correction Internally Consistent? , 2005 .

[16]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[17]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[18]  Julia Kempe,et al.  Fault-tolerant quantum computation – a dynamical systems approach , 2004 .

[19]  R. Alicki General Theory and Applications to Unstable Particles , 2007 .

[20]  M. Sentís Quantum theory of open systems , 2002 .

[21]  Benni Reznik,et al.  DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER , 2001 .

[22]  K. B. Whaley,et al.  Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .

[23]  Topological quantum computing with only one mobile quasiparticle. , 2005, Physical review letters.

[24]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  R. Landauer Is quantum mechanics useful , 1995 .

[26]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[27]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[28]  Ben W. Reichardt Threshold for the distance three Steane quantum code , 2005 .

[29]  G. Kalai Thoughts on Noise and Quantum Computation , 2005, quant-ph/0508095.

[30]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[31]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[32]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[35]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[36]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[37]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[38]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[39]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[40]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[41]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[42]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[43]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[44]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[45]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[46]  Daniel Gottesman Quantum Error Correction and Fault-Tolerance , 2005 .

[47]  D. Bacon Decoherence, Control, and Symmetry in Quantum Computers , 2001 .

[48]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[49]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[50]  H. Carmichael An open systems approach to quantum optics , 1993 .

[51]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[52]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[53]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[54]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[55]  Michael A. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2005 .

[56]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[57]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .

[58]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[60]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[61]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[62]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[63]  Julia Kempe,et al.  Universal noiseless quantum computation: mathematical theory and applications , 2001 .

[64]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[65]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  P. Zanardii Dissipative Dynamics in a Quantum Register , 1997 .

[67]  Klaus Völker Dynamics of the Dissipative Two-State System , 1998 .

[68]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[69]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[70]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[71]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[72]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[73]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[74]  S. Shankar Sastry,et al.  Generalized Performance of Concatenated Quantum Codes—A Dynamical Systems Approach , 2006, IEEE Transactions on Automatic Control.

[75]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[76]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[77]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[78]  D. Dieks Communication by EPR devices , 1982 .

[79]  Raymond Laflamme,et al.  Concatenated Quantum Codes , 1996 .

[80]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.