Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T.

[1]  C. Dobson,et al.  Pulse methods for the simplification of protein NMR spectra , 1975, FEBS letters.

[2]  Gareth A. Morris,et al.  A simple pulse sequence for selective excitation in Fourier transform NMR , 1976 .

[3]  J. Ackerman,et al.  Enhanced surface-coil spatial localization with an inhomogeneous surface gradient , 1985 .

[4]  P A Bottomley,et al.  Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. , 1985, Science.

[5]  J. Schenck,et al.  Estimating radiofrequency power deposition in body NMR imaging , 1985, Magnetic resonance in medicine.

[6]  C J Hardy,et al.  Problems and expediencies in human 31P spectroscopy. The definition of localized volumes, dealing with saturation and the technique‐dependence of quantification , 1989, NMR in biomedicine.

[7]  J. Ackerman,et al.  Spatially‐localized NMR spectroscopy employing an inhomogeneous surface‐spoiling magnetic field gradient 1. Phase coherence spoiling theory and gradient coil design , 1990, NMR in biomedicine.

[8]  J. Ackerman,et al.  Spatially‐localized NMR spectroscopy employing an inhomogeneous surface‐spoiling magnetic field gradient 2. Surface coil experiments with multicompartment phantom and rat in vivo , 1990, NMR in biomedicine.

[9]  C. Hardy,et al.  Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states , 1991 .

[10]  P. Jehenson,et al.  Elimination of surface signals by a surface-spoiling magnetic field gradient. Theoretical optimization and application to human in vivo NMR spectroscopy , 1991 .

[11]  P A Bottomley,et al.  MR spectroscopy of the human heart: the status and the challenges. , 1994, Radiology.

[12]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[13]  K. Uğurbil,et al.  Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. , 1998, Journal of magnetic resonance.

[14]  Reduction of field of view in MRI using a surface‐spoiling local gradient insert , 1998, Journal of magnetic resonance imaging : JMRI.

[15]  R. Balaban,et al.  Improved field of view‐reducing gradient insert: artifacts and application to cardiac imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[16]  L DelaBarre,et al.  BISTRO: An outer‐volume suppression method that tolerates RF field inhomogeneity , 2001, Magnetic resonance in medicine.

[17]  Steven Paul Hirshman,et al.  Compact expressions for the Biot- Savart fields of a filamentary segment , 2002 .

[18]  S. Keevil Spatial localization in nuclear magnetic resonance spectroscopy , 2006, Physics in medicine and biology.

[19]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[20]  Priti Balchandani,et al.  Fat suppression for 1H MRSI at 7T using spectrally selective adiabatic inversion recovery , 2008, Magnetic resonance in medicine.

[21]  S. Neubauer,et al.  Magnetic resonance spectroscopy in myocardial disease. , 2009, JACC. Cardiovascular imaging.

[22]  Katherine C. Wu,et al.  Reduced Myocardial Creatine Kinase Flux in Human Myocardial Infarction: An In Vivo Phosphorus Magnetic Resonance Spectroscopy Study , 2009, Circulation.

[23]  K. Uğurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T , 2009, Magnetic resonance in medicine.

[24]  Jullie W Pan,et al.  Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays , 2009, Magnetic resonance in medicine.

[25]  Michael Schär,et al.  Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics , 2010, Magnetic resonance in medicine.

[26]  Ray Freeman,et al.  Selective excitation in Fourier transform nuclear magnetic resonance. 1978. , 1978, Journal of magnetic resonance.

[27]  J. Hennig,et al.  2089 Zoomed cardiac CINE-MRI using nonlinear phase preparation , 2013 .

[28]  Wolfgang Bogner,et al.  One‐dimensional image‐selected in vivo spectroscopy localized phosphorus saturation transfer at 7T , 2014, Magnetic resonance in medicine.

[29]  Wolfgang Bogner,et al.  In vivo 31P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience , 2014, NMR in biomedicine.

[30]  M. Robson,et al.  Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease , 2014, Journal of hepatology.

[31]  Stefan Neubauer,et al.  Human cardiac 31P magnetic resonance spectroscopy at 7 tesla , 2013, Magnetic resonance in medicine.

[32]  Wolfgang Bogner,et al.  Phosphatidylcholine contributes to in vivo 31P MRS signal from the human liver , 2015, European Radiology.

[33]  Peter R Luijten,et al.  Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil , 2015, Magnetic resonance in medicine.