On the Vibration of Coupled Traveling String and Air Bearing Systems

Air bearings are used to position and guide such axially-moving materials as high speed magnetic tapes, paper sheets, and webs. In each case, vibration of the moving medium couples with the air bearing's dynamics, and techniques are developed here to reduce the computational effort that is required to predict the natural frequencies, damping ratios, and vibration modes of the prototypical traveling string and self-pressurized air bearing model. Automatic nodal point allocation reduces the number of nonlinear equations that arise in finding the equilibrium string displacement and air pressure, and in subsequent vibration analysis, the response is obtained in closed form by using the Green's function for the traveling string. Global discretization of the air pressure alone then yields a matrix eigenvalue problem which is simpler than that obtained through previous methods which required discretization of both displacement and pressure. Overall, essentially a five-fold increase in computational speed is achieved, thus facilitating design and parameter studies. Changes in the natural frequencies, damping ratios, and coupled displacement-pressure mode shapes with respect to several design variables are discussed and compared with experiments.