DNA Sensors with Diamond as a Promising Alternative Transducer Material

Bio-electronics is a scientific field coupling the achievements in biology with electronics to obtain higher sensitivity, specificity and speed. Biosensors have played a pivotal role, and many have become established in the clinical and scientific world. They need to be sensitive, specific, fast and cheap. Electrochemical biosensors are most frequently cited in literature, often in the context of DNA sensing and mutation analysis. However, many popular electrochemical transduction materials, such as silicon, are susceptible to hydrolysis, leading to loss of bioreceptor molecules from the surface. Hence, increased attention has been shifted towards diamond, which surpasses silicon on many levels.

[1]  Xin Jiang,et al.  CVD diamond films: nucleation and growth , 1999 .

[2]  P. D'Orazio Biosensors in clinical chemistry. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[3]  Susan R. Mikkelsen,et al.  Covalent immobilization of DNA onto glassy carbon electrodes , 1992 .

[4]  Greg M. Swain,et al.  Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography , 1999 .

[5]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[6]  Guo-Li Shen,et al.  QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification. , 2007, Biosensors & bioelectronics.

[7]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[8]  Yoichiro Sato,et al.  Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films , 1997 .

[9]  W. Bentley,et al.  DNA microarray for discrimination between pathogenic 0157:H7 EDL933 and non-pathogenic Escherichia coli strains. , 2003, Biosensors & bioelectronics.

[10]  Andreas Offenhäusser,et al.  Label‐free detection of DNA using field‐effect transistors , 2006 .

[11]  J. N. Russell,et al.  Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-induced field effects. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[12]  M vandeVen,et al.  Towards a real-time, label-free, diamond-based DNA sensor. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  J. Dougherty,et al.  Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5' terminus. , 1987, Nucleic acids research.

[14]  Katherine T. Faber,et al.  High-Temperature Hardness of Chemically Vapor-Deposited Diamond , 1993 .

[15]  Lloyd M. Smith,et al.  Synthesis and Characterization of DNA-Modified Silicon (111) Surfaces , 2000 .

[16]  Christoph E. Nebel,et al.  Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes , 2006 .

[17]  Hiroshi Uetsuka,et al.  Diamond and biology , 2007, Journal of The Royal Society Interface.

[18]  Lloyd M. Smith,et al.  DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates , 2002, Nature materials.

[19]  C. M. Wolfe,et al.  Physical Properties of Semiconductors , 1989 .

[20]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[21]  S R Rasmussen,et al.  Covalent immobilization of DNA onto polystyrene microwells: the molecules are only bound at the 5' end. , 1991, Analytical biochemistry.

[22]  G. R. Noakes University Physics , 1942, Nature.

[23]  Michael N. R. Ashfold,et al.  Synthetic diamond: emerging CVD science and technology , 1994 .

[24]  M vandeVen,et al.  EDC-mediated DNA attachment to nanocrystalline CVD diamond films. , 2006, Biosensors & bioelectronics.

[25]  Milos Nesladek,et al.  Growth and properties of nanocrystalline diamond films , 2006 .

[26]  Yoichiro Sato,et al.  Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy , 2002 .

[27]  Cecil Leeburn Wilson,et al.  Comprehensive analytical chemistry , 1959 .

[28]  Chen Wang,et al.  Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. , 2008, Biosensors & bioelectronics.

[29]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  David S. Dandy,et al.  Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages , 1996 .

[31]  Hiroshi Kawarada,et al.  Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Joseph Wang,et al.  Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. , 2004, Biosensors & bioelectronics.

[33]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[34]  Frank F Bier,et al.  Cohort analysis of a single nucleotide polymorphism on DNA chips. , 2004, Biosensors & bioelectronics.

[35]  Bernard Bendow,et al.  Electronic structure of noble metals and polariton-mediated light scattering , 1978 .

[36]  Jian Wang,et al.  Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  J. N. Russell,et al.  Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study. , 2005, The journal of physical chemistry. B.

[38]  F. Bundy,et al.  Man-Made Diamonds , 1955, Nature.

[39]  Alfred B. Anderson,et al.  Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple , 2007, Science.

[40]  P. Schmidt Properties and applications of diamond , 1992 .

[41]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[42]  M. Mascini,et al.  Immobilisation of DNA probes for the development of SPR-based sensing. , 2004, Biosensors & bioelectronics.

[43]  Pedro Estrela,et al.  Optimization of label-free DNA detection with electrochemical impedance spectroscopy using PNA probes. , 2008, Biosensors & bioelectronics.

[44]  R. H. Pantell,et al.  Surface plasmon resonance and immunosensors , 1984 .

[45]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[46]  D. W. van der Weide,et al.  Direct electrical detection of hybridization at DNA-modified silicon surfaces. , 2004, Biosensors & bioelectronics.

[47]  L Michiels,et al.  Topographical and functional characterization of the ssDNA probe layer generated through EDC-mediated covalent attachment to nanocrystalline diamond using fluorescence microscopy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[48]  Y. L. Zhu,et al.  Electrochemical behavior and detection of hepatitis B virus DNA PCR production at gold electrode. , 2003, Biosensors & bioelectronics.

[49]  Robert F. Davis,et al.  Diamond Films and Coatings: Development, Properties and Applications , 1994 .

[50]  K. Loh,et al.  Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. , 2005, The journal of physical chemistry. B.

[51]  K. Hashimoto,et al.  Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. , 1994, Analytical chemistry.

[52]  J. Dismukes,et al.  Synthetic diamond: emerging CVD science and technology , 1994 .

[53]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[54]  T. S. Sudarshan A review of “Diamond Films and Coatings Edited by Robert F. Davis” To obtain contact: Noyes Publications 120 Mill Road Park Ridge, NJ 07658 , 1994 .

[55]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .

[56]  Helmut Ringsdorf,et al.  Direct Observation of Streptavidin Specifically Adsorbed on Biotin‐Functionalized Self‐Assembled Monolayers with the Scanning Tunneling Microscope , 1991 .