Species and lineage identification for yellowfin Thunnus albacares and bigeye T. obesus tunas using two independent multiplex PCR assays

[1]  Rosalee S. Hellberg,et al.  Use of the Mitochondrial Control Region as a Potential DNA Mini-Barcoding Target for the Identification of Canned Tuna Species , 2016, Food Analytical Methods.

[2]  J. Shiao,et al.  Identification of tuna species by a real-time polymerase chain reaction technique , 2012 .

[3]  J. Shiao,et al.  Genetic identification of Thunnus orientalis, T. thynnus, and T. maccoyii by a cytochrome b gene analysis , 2011, Environmental Biology of Fishes.

[4]  V. Martella,et al.  Identification of tuna species in commercial cans by minor groove binder probe real-time polymerase chain reaction analysis of mitochondrial DNA sequences. , 2010, Molecular and cellular probes.

[5]  S. Botti,et al.  Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products , 2010, BMC Biotechnology.

[6]  K. Satoh Accuracy of species identification of yellowfin and bigeye in three canneries of Kingdom of Thailand , 2010 .

[7]  G. Amato,et al.  The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances , 2009, PloS one.

[8]  Sergi Tudela,et al.  A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus) , 2009, PloS one.

[9]  M. Goto,et al.  Detection of SNPs in fish DNA: application of the fluorogenic ribonuclease protection (FRIP) assay for the authentication of food contents. , 2008, Journal of agricultural and food chemistry.

[10]  D. Hwang,et al.  Application of PCR-RFLP analysis on species identification of canned tuna , 2007 .

[11]  A. Roda,et al.  One-step triplex-polymerase chain reaction assay for the authentication of yellowfin (Thunnus albacares), bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis) tuna DNA from fresh, frozen, and canned tuna samples. , 2007, Journal of agricultural and food chemistry.

[12]  M. T. Bottero,et al.  Identification of Four Tuna Species by Means of Real-Time PCR and Melting Curve Analysis , 2007, Veterinary Research Communications.

[13]  M. T. Bottero,et al.  Differentiation of five tuna species by a multiplex primer-extension assay. , 2007, Journal of biotechnology.

[14]  J. Graves,et al.  Specific identification of western Atlantic Ocean scombrids using mitochondrial DNA cytochrome C oxidase subunit I (COI) gene region sequences , 2007 .

[15]  T. Matsunaga,et al.  Discrimination of DNA mismatches by direct force measurement for identification of tuna species , 2006 .

[16]  R. Ward,et al.  DNA barcoding Australia's fish species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  M. Pardo,et al.  Application of relative quantification TaqMan real-time polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares. , 2005, Journal of agricultural and food chemistry.

[18]  F. Colombo,et al.  Identification of tuna species by computer-assisted and cluster analysis of PCR–SSCP electrophoretic patterns , 2005 .

[19]  H. Kishino,et al.  Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes , 1995, Journal of Molecular Evolution.

[20]  A. Delgado,et al.  A comparison of bigeye (Thunnus obesus) stocks and fisheries in the Atlantic, Indian and Pacific Oceans , 2004 .

[21]  T. Itoh,et al.  Geneticand m orphologicalidentification oflarvaland smalljuveniletunas(Pisces:Scombridae)caught by amid-watertrawlin thewestern Pacific , 2003 .

[22]  Javier Terol,et al.  Statistical validation of the identification of tuna species: bootstrap analysis of mitochondrial DNA sequences. , 2002, Journal of agricultural and food chemistry.

[23]  S. Chow,et al.  DNA identification of Pacific bluefin tuna (Thunnus orientalis) in the New Zealand fishery , 2001 .

[24]  T. Matsunaga,et al.  Discrimination between Atlantic and Pacific Subspecies of Northern Bluefin Tuna (Thunnus thynnus) by Magnetic-Capture Hybridization Using Bacterial Magnetic Particles , 2000, Marine Biotechnology.

[25]  A. K. Lockley,et al.  Novel method for the discrimination of tuna (Thunnus thynnus) and bonito (Sarda sarda) DNA. , 2000, Journal of agricultural and food chemistry.

[26]  H. Okamoto,et al.  Genetic divergence between Atlantic and Indo‐Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa , 2000, Molecular ecology.

[27]  R. Pérez-Martín,et al.  Fish species identification in canned tuna by PCR-SSCP : validation by a collaborative study and investigation of intra-species variability of the DNA-patterns , 1999 .

[28]  Ricardo I. Pérez-Martín,et al.  Challenges in the identification of species of canned fish , 1999 .

[29]  B. Ely,et al.  Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations , 1998 .

[30]  R. Pérez-Martín,et al.  Comparison of different methods to produce single‐strand DNA for identification of canned tuna by single‐strand conformation polymorphism analysis , 1998, Electrophoresis.

[31]  B. Ely,et al.  Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region , 1997 .

[32]  R. Pérez-Martín,et al.  Fish species identification in Canned Tuna by DNA Analysis (PCR-SSCP) , 1995 .

[33]  R A Gibbs,et al.  Multiplex PCR: advantages, development, and applications. , 1994, PCR methods and applications.

[34]  W. Davidson,et al.  FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. , 1992, BioTechniques.