MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

We present further development and the first public release o f our multimodal nested sampling algorithm, called MULTINEST. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior s amples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantia l improvements in sampling efficiency and robustness, as compared to the original algorit hm presented in Feroz & Hobson (2008), which itself significantly outperformed existi ng MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MULTINEST algorithm is demonstrated by application to two toy problems and to a cosmological in

[1]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[2]  K. Riedel Numerical Bayesian Methods Applied to Signal Processing , 1996 .

[3]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[4]  M. P. Hobson,et al.  Combining cosmological data sets: hyperparameters and Bayesian evidence , 2002 .

[5]  Michael E. Jones,et al.  Cosmological parameter estimation and Bayesian model comparison using Very Small Array data , 2002, astro-ph/0212497.

[6]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[7]  M. Hobson,et al.  A Bayesian approach to discrete object detection in astronomical data sets , 2002, astro-ph/0204457.

[8]  A. Slosar,et al.  Bayesian joint analysis of cluster weak lensing and Sunyaev–Zel'dovich effect data , 2003, astro-ph/0307098.

[9]  Salvatore Alfano,et al.  Determining If Two Solid Ellipsoids Intersect , 2003 .

[10]  Andrew H. Jaffe,et al.  Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison , 2003, astro-ph/0308461.

[11]  U. von Toussaint,et al.  Bayesian inference and maximum entropy methods in science and engineering , 2004 .

[12]  The Essence of Quintessence and the Cost of Compression , 2004, astro-ph/0407364.

[13]  J. R. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004 .

[14]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[15]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[16]  Bayesian model selection and isocurvature perturbations , 2005, astro-ph/0501477.

[17]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[18]  A Bayesian analysis of the primordial power spectrum , 2005, astro-ph/0511573.

[19]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[20]  W. C. Jones,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[21]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[22]  S Masi,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2006 .

[23]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[24]  P. A. R. Ade,et al.  A Measurement of the CMB EE Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[25]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[26]  J. R. Bond,et al.  Implications of the Cosmic Background Imager Polarization Data , 2007 .

[27]  R. Trotta Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.

[28]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[29]  Lin Lu,et al.  Variational 3D Shape Segmentation for Bounding Volume Computation , 2007, Comput. Graph. Forum.

[30]  M. Hobson,et al.  Efficient Bayesian inference for multimodal problems in cosmology , 2007, astro-ph/0701867.

[31]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[32]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[33]  Benjamin C. Allanach,et al.  Sampling using a 'bank' of clues , 2007, Comput. Phys. Commun..

[34]  F. Feroz,et al.  Bayesian selection of sign μ within mSUGRA in global fits including WMAP5 results , 2008, 0807.4512.

[35]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[36]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[37]  F. Feroz,et al.  The impact of priors and observables on parameter inferences in the constrained MSSM , 2008, 0809.3792.

[38]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[39]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.