Aggregative Modeling of Nonlinear Systems

In the note we examine the recently introduced aggregation modeling technique in a system identification context. First, we show that its finite sample size properties are preserved for any nonlinear SISO system with finite memory. Then, using as an example the peripheral auditory model we demonstrate that it allows to find effective Volterra approximations of LNL systems.

[1]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification , 2007 .

[2]  Yves Rolain,et al.  Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation , 2014, Autom..

[3]  J. Voros Identification of Hammerstein systems with time-varying piecewise-linear characteristics , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[5]  Alexandre B. Tsybakov,et al.  Optimal Rates of Aggregation , 2003, COLT.

[6]  David T. Westwick,et al.  Quasiconvexity analysis of the Hammerstein model , 2014, Autom..

[7]  David T. Westwick,et al.  Identification of Nonlinear Physiological Systems: Westwick/Identification of Nonlinear Physiological Systems , 2005 .

[8]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[9]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems: Marmarelis/Nonlinear , 2004 .

[10]  Grzegorz Mzyk Nonlinearity Recovering in Hammerstein System from Short Measurement Sequence , 2009, IEEE Signal Processing Letters.

[11]  A. Juditsky,et al.  Functional aggregation for nonparametric regression , 2000 .

[12]  Keith R. Godfrey,et al.  Analysis of Best Linear Approximation of a Wiener–Hammerstein System for Arbitrary Amplitude Distributions , 2012, IEEE Transactions on Instrumentation and Measurement.

[13]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches , 2007 .

[14]  Georgios B. Giannakis,et al.  Sparse Volterra and Polynomial Regression Models: Recoverability and Estimation , 2011, IEEE Transactions on Signal Processing.