Prediction of RNA Base Pairing Probabilities on Massively Parallel Computers

We present an implementation of McCaskill's algorithm for computing the base pair probabilities of an RNA molecule for massively parallel message passing architectures. The program can be used to routinely fold RNA sequences of more than 10,000 nucleotides. Applications to complete viral genomes are discussed.

[1]  Peter F. Stadler,et al.  Knowledge Discovery in RNA Sequence Families of HIV Using Scalable Computers , 1996, KDD.

[2]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[3]  Danielle A. M. Konings Coexistence of Multiple Codes in Messenger RNA Molecules , 1992, Comput. Chem..

[4]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[5]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[6]  S. Le,et al.  The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA , 1989, Nature.

[7]  M. Waterman,et al.  RNA secondary structure: a complete mathematical analysis , 1978 .

[8]  M. Huynen,et al.  RNA Folding on Parallel Computers: The Minimum Free Energy Structures of Complete HIV Genomes , 1995 .

[9]  R. Gutell,et al.  Comparative studies of RNA: inferring higher-order structure from patterns of sequence variation , 1993 .

[10]  A. E. Walter,et al.  Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[12]  M. Huynen,et al.  Automatic detection of conserved RNA structure elements in complete RNA virus genomes. , 1998, Nucleic acids research.

[13]  David Sankoff,et al.  RNA secondary structures and their prediction , 1984 .

[14]  Bruce A. Shapiro,et al.  Optimization and Performance Analysis of a Massively Parallel Dynamic Programming Algorithm for Rna Secondary Structure Prediction , 1995, Int. J. High Perform. Comput. Appl..

[15]  Alan S. Perelson,et al.  Base Pairing Probabilities in a Complete HIV-1 RNA , 1996, J. Comput. Biol..

[16]  J. Karn,et al.  A molecular rheostat: Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression , 1994 .

[17]  Luc Jaeger,et al.  RNA pseudoknots , 1992, Current Biology.

[18]  Peter F. Stadler,et al.  Spontaneous and Engineered Deletions in the 3′ Noncoding Region of Tick-Borne Encephalitis Virus: Construction of Highly Attenuated Mutants of a Flavivirus , 1998, Journal of Virology.

[19]  J. Maizel,et al.  Extensive sequence-specific information throughout the CAR/RRE, the target sequence of the human immunodeficiency virus type 1 Rev protein , 1992, Journal of virology.

[20]  Peter F. Stadler,et al.  Automatic Detection of Conserved Base Pairing Patterns in RNA Virus Genomes , 1998, Comput. Chem..

[21]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[22]  N. Pardigon,et al.  Panhandles and hairpin structures at the termini of germiston virus RNAs (Bunyavirus). , 1982, Virology.

[23]  Peter F. Stadler,et al.  Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..

[24]  Akinori Yonezawa,et al.  RNA secondary structure prediction using highly parallel computers , 1995, Comput. Appl. Biosci..