AN ENTROPY CONCENTRATION THEOREM: APPLICATIONS IN ARTIFICIAL INTELLIGENCE AND DESCRIPTIVE STATISTICS
暂无分享,去创建一个
[1] M. Arbib. Brains, Machines, and Mathematics , 1987, Springer US.
[2] Jacques Demongeot,et al. Dynamical Systems and Cellular Automata , 1985 .
[3] J. Laurie Snell,et al. Markov Random Fields and Their Applications , 1980 .
[4] J. Demongeot. Asymptotic Inference for Markov Random Fields on ℤd , 1981 .
[5] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Jan M. Van Campenhout,et al. Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.
[7] Marie Cottrell. Modélisation de réseaux de neurones par des chaines de Markov et autres applications , 1988 .
[8] Judea Pearl,et al. A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.
[9] E. Jaynes. On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.
[10] I. Csiszár. Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .
[11] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[12] R. Ellis,et al. Entropy, large deviations, and statistical mechanics , 1985 .