Multiscale analysis of discrete nonlinear evolution equations
暂无分享,去创建一个
[1] Michel Remoissenet,et al. Waves called solitons , 1994 .
[2] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[3] T. Taniuti. Reductive Perturbation Method and Far Fields of Wave Equations (Part I. General Theory) , 1975 .
[4] N. Flytzanis,et al. Kink, breather and asymmetric envelope or dark solitons in nonlinear chains. I. Monatomic chain , 1985 .
[5] Vito Volterra,et al. Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .
[6] Akira Hasegawa,et al. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .
[7] Y. Kodama,et al. Obstacles to Asymptotic Integrability , 1997 .
[8] M. Ablowitz,et al. Nonlinear-evolution equations of physical significance , 1973 .
[9] T. Benjamin. The stability of solitary waves , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] S. Takeno. Vibron Solitons and Coherent Polarization in an Exactly Tractable Oscillator-Lattice System Applications to Solitons in α Helical Proteins and Fröhlich’s Idea of Biological Activity , 1985 .
[11] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[12] Peyrard,et al. Modulational instabilities in discrete lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[13] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[14] M. Wadati,et al. Soliton phenomena in unstable media , 1991 .
[15] M. Ablowitz,et al. The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .
[16] R. Kraenkel,et al. The Korteweg–de Vries hierarchy and long water‐waves , 1994, patt-sol/9406001.
[17] N. Flytzanis,et al. Propagation of acoustic and optical solitons in nonlinear diatomic chains , 1983 .
[18] Vladimir E. Zakharov,et al. What Is Integrability , 1991 .
[19] T. Brooke Benjamin,et al. The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.