Multiscale analysis of discrete nonlinear evolution equations

The method of multiscale analysis is constructed for discrete systems of evolution equations for which the problem is that of the far behaviour of an input boundary datum. Discrete slow space variables are introduced in a general setting and the related finite differences are constructed. The method is applied to a series of representative examples: the Toda lattice, the nonlinear Klein-Gordon chain, the Takeno system and a discrete version of the Benjamin-Bona-Mahoney-Peregrini equation. Among the resulting limit models we find a discrete nonlinear Schrodinger equation (with reversed spacetime), a three-wave resonant interaction system and a discrete modified Volterra model.

[1]  Michel Remoissenet,et al.  Waves called solitons , 1994 .

[2]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[3]  T. Taniuti Reductive Perturbation Method and Far Fields of Wave Equations (Part I. General Theory) , 1975 .

[4]  N. Flytzanis,et al.  Kink, breather and asymmetric envelope or dark solitons in nonlinear chains. I. Monatomic chain , 1985 .

[5]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[6]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[7]  Y. Kodama,et al.  Obstacles to Asymptotic Integrability , 1997 .

[8]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[9]  T. Benjamin The stability of solitary waves , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  S. Takeno Vibron Solitons and Coherent Polarization in an Exactly Tractable Oscillator-Lattice System Applications to Solitons in α Helical Proteins and Fröhlich’s Idea of Biological Activity , 1985 .

[11]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[12]  Peyrard,et al.  Modulational instabilities in discrete lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[14]  M. Wadati,et al.  Soliton phenomena in unstable media , 1991 .

[15]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[16]  R. Kraenkel,et al.  The Korteweg–de Vries hierarchy and long water‐waves , 1994, patt-sol/9406001.

[17]  N. Flytzanis,et al.  Propagation of acoustic and optical solitons in nonlinear diatomic chains , 1983 .

[18]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[19]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.