Towards the thorium fuel cycle with molten salt fast reactors

There is currently a renewed interest in molten salt reactors, due to recent conceptual developments on fast neutron spectrum molten salt reactors (MSFRs) using fluoride salts. It has been recognized as a long term alternative to solid-fueled fast neutron systems with a unique potential (large negative temperature and void coefficients, lower fissile inventory, no initial criticality reserve, simplified fuel cycle, wastes reduction etc.) and is thus one of the reference reactors of the Generation IV International Forum. In the MSFR, the liquid fuel processing is part of the reactor where a small side stream of the molten salt is processed for fission product removal and then returned to the reactor. Because of this characteristic, the MSFR can operate with widely varying fuel compositions, so that the MSFR concept may use as initial fissile load, 233U or enriched uranium or also the transuranic elements currently produced by light water reactors. This paper addresses the characteristics of these different launching modes of the MSFR and the Thorium fuel cycle, in terms of safety, proliferation, breeding, and deployment capacities of these reactor configurations. To illustrate the deployment capacities of the MSFR concept, a French nuclear deployment scenario is finally presented, demonstrating that launching the Thorium fuel cycle is easily feasible while closing the current fuel cycle and optimizing the long-term waste management via stockpile incineration in MSRs.

[1]  M. E. Whatley,et al.  ENGINEERING DEVELOPMENT OF THE MSBR FUEL RECYCLE. , 1970 .

[2]  L. Mathieu Cycle thorium et réacteurs à sel fondu. Exploration du champ des paramètres et des contraintes définissant le "Thorium Molten Salt Reactor" , 2005 .

[3]  R. Brissot,et al.  The thorium molten salt reactor : Moving on from the MSBR , 2005, nucl-ex/0506004.

[4]  V. Ignatiev,et al.  Progress in development of MOSART concept with Th support , 2012 .

[5]  M. Allibert,et al.  MINIMIZING THE FISSILE INVENTORY OF THE MOLTEN SALT FAST REACTOR , 2009 .

[6]  M. Allibert,et al.  Optimizing the Burning Efficiency and the Deployment Capacities of the Molten Salt Fast Reactor , 2009 .

[7]  J. Oosterhaven,et al.  Annual Report 2008 , 2009 .

[8]  Alexis Nuttin Potentialités du concept de réacteur à sels fondus pour une production durable d'énergie nucléaire basée sur le cycle thorium en spectre épithermique , 2002 .

[9]  M. Allibert,et al.  Simulation Tools and New Developments of the Molten Salt Fast Reactor , 2010 .

[10]  C. Forsberg,et al.  Liquid Salt Applications and Molten Salt Reactors , 2007 .

[11]  Xavier Doligez Influence du retraitement physico-chimique du sel combustible sur le comportement du MSFR et sur le dimensionnement de son unité de retraitement , 2010 .

[12]  R. Brissot,et al.  Possible Configurations for the Thorium Molten Salt Reactor and Advantages of the Fast Nonmoderated Version , 2009 .

[13]  Timothy Abram,et al.  A Technology Roadmap for Generation-IV Nuclear Energy Systems, USDOE/GIF-002-00 , 2002 .

[14]  D. Heuer,et al.  Preliminary safety calculations to improve the design of Molten Salt Fast Reactor , 2012 .

[15]  M. Allibert,et al.  Reactor physic and reprocessing scheme for innovative molten salt reactor system , 2009 .

[16]  L. Mathieu,et al.  POTENTIAL OF THORIUM MOLTEN SALT REACTORS : DETAILED CALCULATIONS AND CONCEPT EVOLUTIONS IN VIEW OF A LARGE NUCLEAR ENERGY PRODUCTION , 2004 .

[17]  J. Kloosterman,et al.  The Molten Salt Reactor in Generation IV: Overview and Perspectives , 2014 .

[18]  J. Loiseaux,et al.  Scenarios for a worldwide deployment of nuclear power , 2006 .