Long-Term Regional Estimates of Evapotranspiration for Mexico Based on Downscaled ISCCP Data

Abstract The development and evaluation of a long-term high-resolution dataset of potential and actual evapotranspiration for Mexico based on remote sensing data are described. Evapotranspiration is calculated using a modified version of the Penman–Monteith algorithm, with input radiation and meteorological data from the International Satellite Cloud Climatology Project (ISCCP) and vegetation distribution derived from Advanced Very High Resolution Radiometer (AVHRR) products. The ISCCP data are downscaled to ⅛° resolution using statistical relationships with data from the North American Regional Reanalysis (NARR). The final product is available at ⅛°, daily, for 1984–2006 for all Mexico. Comparisons are made with the NARR offline land surface model and measurements from approximately 1800 pan stations. The remote sensing estimate follows well the seasonal cycle and spatial pattern of the comparison datasets, with a peak in late summer at the height of the North American monsoon and highest values in low-l...

[1]  D. Lettenmaier,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States* , 2002 .

[2]  Ramakrishna R. Nemani,et al.  Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[4]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[5]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[7]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[8]  Alan H. Strahler,et al.  Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer–derived surface albedo over global arid regions , 2006 .

[9]  K.M.P.S Bandara,et al.  Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season , 2003 .

[10]  Dennis P. Lettenmaier,et al.  Long-Term Climate and Derived Surface Hydrology and Energy Flux Data for Mexico: 1925–2004 , 2007 .

[11]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[12]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[13]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[14]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[15]  S. Running,et al.  An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation , 1999 .

[16]  Dennis P. Lettenmaier,et al.  Variable infiltration capacity cold land process model updates , 2003 .

[17]  Robert E. Wolfe,et al.  An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series , 2008, IEEE Geoscience and Remote Sensing Letters.

[18]  R. Allen,et al.  Satellite-based ET mapping to assess variation in ET with timing of crop development , 2007 .

[19]  W. L. Darnell,et al.  A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data II. Regional and global patterns of seasonal and annual variations , 1998 .

[20]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[21]  Thomas J. Jackson,et al.  THE NAME 2004 FIELD CAMPAIGN AND MODELING STRATEGY , 2006 .

[22]  Rasmus Houborg,et al.  Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data - application to Zealand, Denmark , 2004 .

[23]  M. Ek,et al.  The Influence of Atmospheric Stability on Potential Evaporation , 1984 .

[24]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[25]  Simona Consoli,et al.  Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy , 2006 .

[26]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology , 2007 .

[27]  Ramakrishna R. Nemani,et al.  An operational remote sensing algorithm of land surface evaporation , 2003 .

[28]  D. Lettenmaier,et al.  Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification , 1996 .

[29]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[30]  J. David,et al.  Evaporation of Intercepted Rainfall , 2006 .

[31]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[32]  W. Kustas,et al.  The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): Background, Hydrometeorological Conditions, and Preliminary Findings , 2005 .

[33]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[34]  M. Tasumi,et al.  Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level , 2008, Irrigation Science.

[35]  D. Lettenmaier,et al.  Satellite‐based near‐real‐time estimation of irrigated crop water consumption , 2009 .

[36]  M. Mccabe,et al.  Closing the terrestrial water budget from satellite remote sensing , 2009 .

[37]  R. Leuning,et al.  Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[38]  Matthew F. McCabe,et al.  Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA) , 2005 .

[39]  S. Nigam,et al.  Seasonal Hydroclimate Variability over North America in Global and Regional Reanalyses and AMIP Simulations: Varied Representation , 2006 .

[40]  Peter E. Thornton,et al.  The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction , 2007 .

[41]  Taikan Oki,et al.  ' GLACE : The Global Land-Atmosphere Coupling Experiment . 1 . Overview , 2005 .

[42]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[43]  Wim G.M. Bastiaanssen,et al.  Irrigation Performance using Hydrological and Remote Sensing Modeling , 2002 .

[44]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[45]  Alan H. Strahler,et al.  MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types , 2005 .

[46]  Konstantin V. Khlopenkov,et al.  Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes , 2006 .

[47]  A. Betts Coupling of water vapor convergence, clouds, precipitation, and land-surface processes , 2007 .

[48]  Matthew F. McCabe,et al.  Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies , 2008 .

[49]  Matthew F. McCabe,et al.  Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors , 2006 .

[50]  Eric F. Wood,et al.  Comparison and evaluation of gridded radiation products across northern Eurasia , 2009 .

[51]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[52]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[53]  Fabio Castelli,et al.  Estimation of Surface Turbulent Fluxes through Assimilation of Radiometric Surface Temperature Sequences , 2004 .

[54]  W. James Shuttleworth,et al.  Measurement and modelling evaporation for irrigated crops in north‐west Mexico , 1998 .

[55]  Martha C. Anderson,et al.  A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales , 2004 .

[56]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[57]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[58]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[59]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP) Web Site An Online Resource for Research , 2004 .

[60]  G. Fogg The state and movement of water in living organisms. , 1966, Journal of the Marine Biological Association of the United Kingdom.

[61]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[62]  D. Lettenmaier,et al.  Sensitivity of the water resources of Rio Yaqui Basin, Mexico, to agriculture extensification under multiscale climate conditions , 2009 .

[63]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[64]  Amélie Rajaud,et al.  A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[65]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[66]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[67]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[68]  M. Mccabe,et al.  Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation , 2008 .

[69]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[70]  P. Dirmeyer,et al.  ISLSCP initiative II global data sets : Surface boundary conditions and atmospheric forcings for land-atmosphere studies , 2006 .