Muon anomalous magnetic moment in the supersymmetric economical 3-3-1 model
暂无分享,去创建一个
[1] N. T. Thuy,et al. Inflation and leptogenesis in the 3-3-1-1 model , 2015, 1501.00543.
[2] H. Long,et al. Connection of g − 2 μ , electroweak, dark matter, and collider constraints on 331 models , 2014, 1408.6203.
[3] N. T. Thuy,et al. Phenomenology of the 3-3-1-1 model , 2014, 1405.2591.
[4] F. Queiroz,et al. The muon anomalous magnetic moment in the reduced minimal 3-3-1 model , 2013, 1312.0051.
[5] F. Queiroz. Non-thermal WIMPs as Dark Radiation , 2013, 1310.3026.
[6] C. A. Pires,et al. A 331 WIMPy dark radiation model , 2013, 1308.6630.
[7] T. P. Nguyen,et al. 3-3-1 model with inert scalar triplet , 2013, 1308.4097.
[8] P. V. Dong,et al. 3-3-1-1 model for dark matter , 2013, 1305.0369.
[9] H. Long,et al. Lepton flavor violating processes τ→μγ, τ→3μ and Z→μτ in the supersymmetric economical 3-3-1 model , 2013, 1301.4652.
[10] A. Alves,et al. Explaining the Higgs decays at the LHC with an extended electroweak model , 2012, 1207.3699.
[11] Avelino Vicente,et al. Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution , 2012, 1206.6497.
[12] C. A. Pires,et al. Connection of gamma rays, dark matter, and Higgs boson searches at the LHC , 2012, 1206.5779.
[13] H. Long,et al. Question of Peccei-Quinn symmetry and quark masses in the economical 3-3-1 model , 2012, 1205.5648.
[14] H. Long,et al. Lepton-flavor violating decays of neutral Higgs to muon and tauon in supersymmetric economical 3-3-1 model , 2012, 1204.2902.
[15] P. R. Teles,et al. Novel sources of Flavor Changed Neutral Currents in the 331RHN model , 2012, 1201.1268.
[16] Debottam Das,et al. Enhanced Higgs mediated lepton flavour violating processes in the supersymmetric inverse seesaw model , 2011, 1111.5836.
[17] C. A. Pires,et al. WIMPs in a 3-3-1 model with heavy sterile neutrinos , 2010, 1010.4097.
[18] Zhiqin Zhang. The Discrepancy Between tau and e+e- Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly , 2010 .
[19] M. Davier,et al. Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e+e−→π+π− cross section data from BABAR , 2009, 0908.4300.
[20] M. Davier,et al. The discrepancy between τ and e+e− spectral functions revisited and the consequences for the muon magnetic anomaly , 2009, 0906.5443.
[21] H. Long,et al. Supersymmetric economical 3–3–1 model , 2007, hep-ph/0701137.
[22] C. Kolda,et al. Higgs-mediated τ → 3μ in the supersymmetric seesaw model , 2002, hep-ph/0206310.
[23] C. A. Pires,et al. Electric charge quantization and the muon anomalous magnetic moment , 2001, hep-ph/0108200.
[24] C. A. Pires,et al. Scalar scenarios contributing to ( g − 2 ) μ with enhanced Yukawa couplings , 2001, hep-ph/0103083.
[25] W. Marciano,et al. Muon anomalous magnetic moment: A harbinger for ''new physics'' , 2001 .
[26] N. A. Kỳ,et al. Anomalous magnetic moment of muon in 3–3–1 models , 2000, hep-ph/0007010.
[27] Moroi. Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. , 1995, Physical review. D, Particles and fields.
[28] Chattopadhyay,et al. Probing supergravity grand unification in the Brookhaven g-2 experiment. , 1995, Physical review. D, Particles and fields.
[29] P. Langacker,et al. Implications of precision electroweak experiments for mt, rho 0, sin2 theta W, and grand unification. , 1991, Physical review. D, Particles and fields.
[30] A. I. Davydychev. Some exact results for N-point massive Feynman integrals , 1991 .
[31] I-Hsiu Lee. Lepton number violation in softly broken supersymmetry (II) , 1984 .
[32] R. Arnowitt,et al. Supersymmetric electro-weak effects ongμ−2 , 1984 .
[33] I. Lee. Lepton number violation in softly broken supersymmetry , 1984 .
[34] L. Krauss,et al. Low energy supergravity and the anomalous magnetic moment of the muon , 1983 .
[35] L. Maiani,et al. The muon anomalous magnetic moment in broken supersymmetric theories , 1982 .
[36] A. Méndez,et al. Constraints on Supersymmetric Particle Masses From ($g-2$) $\mu$ , 1982 .
[37] J. Ellis,et al. Flavour-changing neutral interactions in broken supersymmetric theories , 1982 .
[38] F. Queiroz,et al. Constraining the Z (cid:2) mass in 331 models using direct dark matter detection , 2014 .
[39] A. Barroso,et al. FLAVOUR VIOLATION IN SUPERSYMMETRIC THEORIES , 1985 .
[40] P. Fayet. Supersymmetry, Particle Physics and Gravitation , 1980 .
[41] M. Veltman. The Infrared - Ultraviolet Connection , 1980 .