Succinct Garbling Schemes from Functional Encryption through a Local Simulation Paradigm

We study a simulation paradigm, referred to as local simulation, in garbling schemes. This paradigm captures simulation proof strategies in which the simulator consists of many local simulators that generate different blocks of the garbled circuit. A useful property of such a simulation strategy is that only a few of these local simulators depend on the input, whereas the rest of the local simulators only depend on the circuit.

[1]  B. Applebaum Cryptography in NC0 , 2014 .

[2]  Mihir Bellare,et al.  Foundations of garbled circuits , 2012, CCS.

[3]  Nir Bitansky,et al.  ZAPs and Non-Interactive Witness Indistinguishability from Indistinguishability Obfuscation , 2015, TCC.

[4]  Vinod Vaikuntanathan,et al.  Functional Encryption with Bounded Collusions via Multi-party Computation , 2012, CRYPTO.

[5]  Fabrice Benhamouda,et al.  k-Round Multiparty Computation from k-Round Oblivious Transfer via Garbled Interactive Circuits , 2018, EUROCRYPT.

[6]  Yael Tauman Kalai,et al.  One-Time Programs , 2008, CRYPTO.

[7]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[8]  Ran Canetti,et al.  Fully Succinct Garbled RAM , 2016, ITCS.

[9]  Kai-Min Chung,et al.  Constant-Round Concurrent Zero-Knowledge from Indistinguishability Obfuscation , 2015, CRYPTO.

[10]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[11]  Mark Zhandry,et al.  Exploding Obfuscation: A Framework for Building Applications of Obfuscation From Polynomial Hardness , 2017, IACR Cryptol. ePrint Arch..

[12]  Stefano Tessaro,et al.  Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs , 2017, CRYPTO.

[13]  Benny Applebaum,et al.  Key-Dependent Message Security: Generic Amplification and Completeness , 2011, Journal of Cryptology.

[14]  Abhishek Jain,et al.  Indistinguishability Obfuscation from Compact Functional Encryption , 2015, CRYPTO.

[15]  Yehuda Lindell,et al.  Secure Computation on the Web: Computing without Simultaneous Interaction , 2011, IACR Cryptol. ePrint Arch..

[16]  Sanjam Garg,et al.  Single-Key to Multi-Key Functional Encryption with Polynomial Loss , 2016, TCC.

[17]  Brent Waters,et al.  Constrained Pseudorandom Functions for Unconstrained Inputs , 2016, EUROCRYPT.

[18]  Nico Döttling,et al.  Identity-Based Encryption from the Diffie-Hellman Assumption , 2017, CRYPTO.

[19]  A. Sahai,et al.  Indistinguishability Obfuscation from Functional Encryption for Simple Functions Prabhanjan Ananth , 2015 .

[20]  Craig Gentry,et al.  Succinct Randomized Encodings and their Applications. , 2014 .

[21]  Yehuda Lindell,et al.  A Proof of Security of Yao’s Protocol for Two-Party Computation , 2009, Journal of Cryptology.

[22]  Sanjam Garg,et al.  Garbled Protocols and Two-Round MPC from Bilinear Maps , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[23]  Yuval Ishai,et al.  From Secrecy to Soundness: Efficient Verification via Secure Computation , 2010, ICALP.

[24]  Benny Applebaum,et al.  Bootstrapping Obfuscators via Fast Pseudorandom Functions , 2014, ASIACRYPT.

[25]  Rafail Ostrovsky,et al.  Adaptively Secure Garbled Circuits from One-Way Functions , 2016, CRYPTO.

[26]  Amit Sahai,et al.  Functional Encryption for Turing Machines , 2016, TCC.

[27]  Nico Döttling,et al.  Laconic Oblivious Transfer and Its Applications , 2017, CRYPTO.

[28]  Amit Sahai,et al.  Worry-free encryption: functional encryption with public keys , 2010, CCS '10.

[29]  Nir Bitansky,et al.  Indistinguishability Obfuscation from Functional Encryption , 2018, J. ACM.

[30]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[31]  Yuval Ishai,et al.  Bounded Key-Dependent Message Security , 2010, IACR Cryptol. ePrint Arch..

[32]  Daniel Wichs,et al.  Adaptively Indistinguishable Garbled Circuits , 2017, TCC.

[33]  Sanjam Garg,et al.  Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium , 2016, CRYPTO.

[34]  Mark Zhandry,et al.  Breaking the Sub-Exponential Barrier in Obfustopia , 2017, EUROCRYPT.

[35]  Yael Tauman Kalai,et al.  Succinct Functional Encryption and Applications: Reusable Garbled Circuits and Beyond , 2012, IACR Cryptol. ePrint Arch..

[36]  Craig Gentry,et al.  i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits , 2010, IACR Cryptol. ePrint Arch..

[37]  Rafail Ostrovsky,et al.  Garbled RAM Revisited , 2014, EUROCRYPT.

[38]  Sanjam Garg,et al.  Two-round Multiparty Secure Computation from Minimal Assumptions , 2018, IACR Cryptol. ePrint Arch..

[39]  Vinod Vaikuntanathan,et al.  From Selective to Adaptive Security in Functional Encryption , 2015, CRYPTO.

[40]  Nico Döttling,et al.  New Constructions of Identity-Based and Key-Dependent Message Secure Encryption Schemes , 2018, Public Key Cryptography.

[41]  Vinod Vaikuntanathan,et al.  Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions , 2018, IACR Cryptol. ePrint Arch..

[42]  Rafail Ostrovsky,et al.  Garbled RAM From One-Way Functions , 2015, STOC.

[43]  Ran Canetti,et al.  Adaptive Succinct Garbled RAM or: How to Delegate Your Database , 2016, TCC.

[44]  Ran Canetti,et al.  Indistinguishability Obfuscation of Iterated Circuits and RAM Programs , 2014, IACR Cryptol. ePrint Arch..

[45]  Amit Sahai,et al.  Achieving Compactness Generically: Indistinguishability Obfuscation from Non-Compact Functional Encryption , 2015, IACR Cryptol. ePrint Arch..

[46]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[47]  Amit Sahai,et al.  Patchable Indistinguishability Obfuscation: iO for Evolving Software , 2017, EUROCRYPT.

[48]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[49]  Sanjam Garg,et al.  A Simple Construction of iO for Turing Machines , 2018, IACR Cryptol. ePrint Arch..

[50]  Sanjam Garg,et al.  Incremental Program Obfuscation , 2017, CRYPTO.

[51]  Kai-Min Chung,et al.  Delegating RAM Computations with Adaptive Soundness and Privacy , 2016, TCC.

[52]  Kai-Min Chung,et al.  Cryptography for Parallel RAM from Indistinguishability Obfuscation , 2016, ITCS.

[53]  Amit Sahai,et al.  Indistinguishability Obfuscation for Turing Machines: Constant Overhead and Amortization , 2017, CRYPTO.

[54]  Daniel Wichs,et al.  On the Communication Complexity of Secure Function Evaluation with Long Output , 2015, IACR Cryptol. ePrint Arch..

[55]  Allison Bishop,et al.  Indistinguishability Obfuscation for Turing Machines with Unbounded Memory , 2015, IACR Cryptol. ePrint Arch..

[56]  Nir Bitansky,et al.  Time-Lock Puzzles from Randomized Encodings , 2016, IACR Cryptol. ePrint Arch..

[57]  Yuval Ishai,et al.  Computationally Private Randomizing Polynomials and Their Applications , 2005, Computational Complexity Conference.

[58]  Daniel Wichs,et al.  Adaptive Security of Yao's Garbled Circuits , 2016, TCC.

[59]  Mark Zhandry,et al.  Decomposable Obfuscation: A Framework for Building Applications of Obfuscation from Polynomial Hardness , 2017, TCC.

[60]  Sanjam Garg,et al.  Adaptively Secure Garbling with Near Optimal Online Complexity , 2018, IACR Cryptol. ePrint Arch..