Preliminary diagnosis of areal density in the deuterium fuel capsule by proton measurement at SG-III facility
暂无分享,去创建一个
Xing Zhang | Ji Yan | Feng Wang | Qi Tang | Wei Jiang | Shenye Liu | Jiamin Yang | Xing Luo | Zhenghua Yang | Jianhua Zheng | Pin Yang | Shaoen Jiang | Tianxuan Huang | Zhongjing Chen | Yudong Pu | Zifeng Song | Jiamin Yang | Feng Wang | Ji Yan | Shaoen Jiang | Jianhua Zheng | Wei Jiang | Zhenghua Yang | Yudong Pu | Zhongjing Chen | Zifeng Song | Xing Zhang | Pin Yang | Qi Tang | Shen-ye Liu | Xiangdong Luo | T. Huang
[1] J. D. Kilkenny,et al. Charged-Particle Probing of X-ray–Driven Inertial-Fusion Implosions , 2010, Science.
[2] Shenye Liu,et al. The application of proton spectrometers at the SG-III facility for ICF implosion areal density diagnostics , 2015 .
[3] Barry E. Schwartz,et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas , 2003 .
[4] Nakai,et al. Areal density measurement of imploded cryogenic target by energy peak shift of DD-produced protons. , 1995, Physical review letters.
[5] Marcel Reginatto,et al. Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED , 2002 .
[6] Dean L. Preston,et al. Charged Particle Motion in a Highly Ionized Plasma , 2005 .
[7] Damien G. Hicks,et al. Charged-particle spectroscopy: A new window on inertial confinement fusion , 1999 .
[8] R. Petrasso,et al. Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.
[9] T. C. Sangster,et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions. , 2014, Physical review letters.
[10] J. M. Soures,et al. Measuring shock-bang timing and ρR evolution of D3He implosions at OMEGA , 2004 .
[11] P. B. Radha,et al. Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGAa) , 2007 .
[12] Gilbert W. Collins,et al. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions. , 2012, The Review of scientific instruments.
[13] P. B. Radha,et al. Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at OMEGA , 2002 .
[14] A. Dell'Acqua,et al. Geant4 - A simulation toolkit , 2003 .
[15] V. A. Smalyuk,et al. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility , 2014 .
[16] T. C. Sangster,et al. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science. , 2012, The Review of scientific instruments.
[17] J. Ziegler,et al. SRIM – The stopping and range of ions in matter (2010) , 2010 .
[18] V N Goncharov,et al. Effects of nonuniform illumination on implosion asymmetry in direct-drive inertial confinement fusion. , 2004, Physical review letters.
[19] Barry E. Schwartz,et al. Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium–helium protons in direct-drive OMEGA implosions , 2003 .
[20] J. D. Moody,et al. Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .
[21] Shaoen Jiang,et al. Direct-drive cryogenic-target implosion experiments on SGIII prototype laser facility , 2014 .