Structural studies of carbanionic species α to a phosphoryl group; anion from ketophosphonate comparison with related enoxysilanes and p‐ylid

The structure of the carbanionic species 4 formed from diethyl(2-oxopropyl)phosphonate and t-BuOK has been studied by 1H, 13C and 31P NMR. In an associating medium (pyridine), a single chelated (C) carbanionic species 4Z (C) is observed. Two slowly interconverting species 4Z and 4E co-exist when the anion-cation interaction is loose, i.e. in Me2SO and when the gegenion K+ is complexed to (2,2,2)cryptand in Me2SO. The anionic carbon of 4Z and 4E is planar, and they have a strong enolate character as shown by the barrier to rotation around the C-1C-2 bond (ΔGc‡∼92 KJ mol−1). Their structures are compared to those of the related E and Z 1-diethylphosphonato-2-trimethylsilyloxypropenes and to (acetylmethylene)triphenylphosphorane.

[1]  J. Corset,et al.  Structural study of carbanionic species .alpha. to a phosphoryl group. The anion of diethyl [(carbomethoxy)methyl]phosphonate. Comparison with phosphorus-ylidic esters and acetoacetic esters anions , 1980 .

[2]  R. Noyori,et al.  Tris(dialkylamino)sulfonium enolates , 1980 .

[3]  M. Raban,et al.  NMR studies of enolate anions. 6. A carbon-13 NMR study of alkali metal chelation by 3-alkylacetylacetonates , 1979 .

[4]  M. Pouet,et al.  Structural studies of carbanionic species formed from phosphonates: anions of diethyl benzyl- and cyanomethylphosphonates , 1978 .

[5]  L. M. Jackman,et al.  Structure and reactivity of alkali metal enolates , 1977 .

[6]  M. D. Gordon,et al.  NUCLEAR MAGNETIC RESONANCE STUDIES. 5. PROPERTIES OF PHOSPHORUS-CARBON YLIDES , 1976 .

[7]  E. Schweizer,et al.  Magnetic resonance studies. II. Investigation of phosphonium salts containing unsaturated groups by carbon-13 and phosphorus-31 nuclear magnetic resonance , 1975 .

[8]  H. Schmidbaur,et al.  1H‐, 13C‐ und 31P‐NMR‐Daten des Trimethylmethylenphosphorans , 1973 .

[9]  H. Dreeskamp,et al.  Notizen: NMR-Kopplungskonstanten in freien und komplexierten phosphororganischen Liganden / NMR Coupling Constants in Free and Complexed Phosphororganic Ligands , 1973 .

[10]  T. Bundgaard,et al.  Assignments and signs of 13C-31P coupling constants from off-resonance proton decoupled 13C spectra , 1972 .

[11]  B. Walker,et al.  NMR spectroscopic studies of formylmethylenetriphenylphosphoranes and their alkylation products , 1972 .

[12]  A. J. Dale,et al.  A Study of Internal Rotation in Ylides of Arsenic, Phosphorus, and Sulphur. , 1970 .

[13]  M. Simonnin,et al.  Dérivés Alléniques du Phosphore. Influence de l'État de Coordination du Phosphore et de la Nature des Radicaux Liés au Phosphore sur les Signes de J(PH) , 1969 .

[14]  W. Mcfarlane,et al.  A 13C and 31P magnetic double resonance study of organo-phosphorus compounds , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  M. Williamson,et al.  Proton magnetic resonance spectra of diethyl vinylphosphonate and substituted vinylphosphonates , 1968 .

[16]  E. Kosower An introduction to physical organic chemistry , 1968 .

[17]  J. Snyder,et al.  Temperature dependence of the phosphorus-carbon-hydrogen nuclear magnetic resonance spectra of methylenetriphenylphosphoranes , 1967 .

[18]  J. Lancaster Use of double quantum spectra in the analysis of vinyl-phosphorus proton NMR spectra , 1967 .

[19]  H. S. Gutowsky,et al.  Rate Processes and Nuclear Magnetic Resonance Spectra. II. Hindered Internal Rotation of Amides , 1956 .