A Sub-cubic Time Algorithm for the k -Maximum Subarray Problem

We design a faster algorithm for the k-maximum subarray problem under the conventional RAM model, based on distance matrix multiplication (DMM). Specifically we achieve O(n3 √log log n/ log n + k log n) for a general problem where overlapping is allowed for solution arrays. This complexity is sub-cubic when k = o(n3/ log n). The best known complexities of this problem are O(n3 + k log n), which is cubic when k = O(n3/ log n), and O(kn3 √log log n/ log n), which is sub-cubic when k = o(√log n/ log log n).

[1]  Tadao Takaoka,et al.  Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication , 2002, CATS.

[2]  Tadao Takaoka,et al.  Improved Algorithms for the K-Maximum Subarray Problem for Small K , 2005, COCOON.

[3]  W. Dobosiewicz A more efficient algorithm for the min-plus multiplication , 1990 .

[4]  Tadao Takaoka,et al.  Algorithms for k-Disjoint Maximum Subarrays , 2007, Int. J. Found. Comput. Sci..

[5]  Stephen Gilmore,et al.  Combining Measurement and Stochastic Modelling to Enhance Scheduling Decisions for a Parallel Mean Value Analysis Algorithm , 2006, International Conference on Computational Science.

[6]  Kuan-Yu Chen,et al.  Improved algorithms for the k maximum-sums problems , 2006, Theor. Comput. Sci..

[7]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2005, WADS.

[8]  Tadao Takaoka,et al.  Improved Algorithms for the K-Maximum Subarray Problem , 2006, Comput. J..

[9]  Yossi Azar,et al.  Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings , 2006, ESA.

[10]  Surender Baswana,et al.  Improved algorithms for all-pairs approximate shortest paths in weighted graphs , 2005 .

[11]  D. T. Lee,et al.  Randomized Algorithm for the Sum Selection Problem , 2005, ISAAC.

[12]  Tadao Takaoka An O(n3loglogn/logn) time algorithm for the all-pairs shortest path problem , 2005, Inf. Process. Lett..

[13]  Yijie Han,et al.  An O(n3(log log n/log n)5/4) Time Algorithm for All Pairs Shortest Path , 2008, Algorithmica.

[14]  Uri Zwick,et al.  A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths , 2004, ISAAC.

[15]  Yijie Han,et al.  An O(n3 (loglogn/logn)5/4) Time Algorithm for All Pairs Shortest Paths , 2006, ESA.

[16]  Sung Eun Bae,et al.  Sequential and Parallel Algorithms for the Generalized Maximum Subarray Problem , 2007 .

[17]  Kuan-Yu Chen,et al.  Improved Algorithms for the k Maximum-Sums Problems , 2005, ISAAC.

[18]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[19]  Allan Grønlund Jørgensen,et al.  A Linear Time Algorithm for the k Maximal Sums Problem , 2007, MFCS.

[20]  Tadao Takaoka A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, WG.

[21]  Tadao Takaoka A Faster Algorithm for the All-Pairs Shortest Path Problem and Its Application , 2004, COCOON.

[22]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[23]  Jon Louis Bentley Programming pearls: perspective on performance , 1984, CACM.

[24]  Hisao Tamaki,et al.  Algorithms for the maximum subarray problem based on matrix multiplication , 1998, SODA '98.

[25]  Fredrik Bengtsson,et al.  Efficient Algorithms for k Maximum Sums , 2004, ISAAC.

[26]  Tadao Takaoka,et al.  Algorithm for K Disjoint Maximum Subarrays , 2006, International Conference on Computational Science.

[27]  Yijie Han,et al.  Improved algorithm for all pairs shortest paths , 2004, Inf. Process. Lett..

[28]  Jingsen Chen,et al.  A note on ranking k maximum sums , 2005 .

[29]  Donald B. Johnson,et al.  The Complexity of Selection and Ranking in X+Y and Matrices with Sorted Columns , 1982, J. Comput. Syst. Sci..

[30]  Tadao Takaoka,et al.  Algorithms for the problem of K maximum sums and a VLSI algorithm for the K maximum subarrays problem , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[31]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..

[32]  Timothy M. Chan More algorithms for all-pairs shortest paths in weighted graphs , 2007, STOC '07.

[33]  Jon Louis Bentley,et al.  Programming pearls , 1987, CACM.