New potassium–sodium niobate ternary system with large piezoelectric coefficient and high Curie temperature

In this paper, a new potassium–sodium niobate ternary system (0.96 − x)Ka0.48Na0.52NbO3–0.04Bi0.5Na0.5ZrO3–xBiAlO3 [(0.96 − x)KNN–0.04BNZ–xBA] with large piezoelectric coefficient (d33) and high Curie temperature (TC) simultaneously was attained due to the movement of orthorhombic–tetragonal phase transition temperature (TO–T) to room temperature and the enhanced dielectric properties. Especially, the ceramics with a composition of x = 0.005 show a large d33 of ~355 pC/N together with a high TC of ~335 °C. And moreover, a good thermal stability of d33 (e.g., d33 ≥ 316 pC/N, T ≤ 300 °C) was also observed in the ternary ceramics. Such a good comprehensive performance of d33 and TC attained in this work is superior to many reported results in the KNN-based materials. As a result, it was believed that this potassium–sodium niobate system with both large d33 and high TC will become one of the promising materials in the practical application.

[1]  O. P. Thakur,et al.  Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics , 2014 .

[2]  Jiagang Wu,et al.  Orthorhombic–tetragonal phase coexistence and piezoelectric behavior in (1−x)(Ba,Ca)(Ti,Sn)O3–x(Ba,Ca)(Ti,Zr)O3 lead-free ceramics , 2013 .

[3]  Tao-Hsing Chen,et al.  Effect of HfO2 content on the microstructure and piezoelectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics , 2014 .

[4]  Longlong Fan,et al.  Enhanced Piezoelectric Properties and Thermal Stability in the (K0.5Na0.5)NbO3:ZnO Lead‐Free Piezoelectric Composites , 2015 .

[5]  Jianguo Zhu,et al.  Microstructure and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3–0.05(Bi0.5K0.5)Zr1−xTixO3 ceramics , 2014, Journal of Materials Science: Materials in Electronics.

[6]  Kongjun Zhu,et al.  Phase transition, microstructure, and dielectric properties of Li/Ta/Sb co-doped (K, Na)NbO3 lead-free ceramics , 2014 .

[7]  Peng Fu,et al.  Effects of Eu2O3 on the structure and electrical properties of 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics , 2011 .

[8]  Q. Yin,et al.  Piezoelectric and dielectric properties of Sm2O3-doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics , 2010 .

[9]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics vs. PZT? , 2006, 2006 15th ieee international symposium on the applications of ferroelectrics.

[10]  D. Xiao,et al.  Temperature stability, phase structure and electrical behavior of Li-modified 0.99(K0.48Na0.52)NbO3–0.01BiCoO3 piezoelectric ceramics , 2014 .

[11]  J. Zhai,et al.  Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics , 2015 .

[12]  R. Roth,et al.  Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate , 1955 .

[13]  I. Kim,et al.  Phase Transition, Electrical Properties, and Temperature‐Insensitive Large Strain in BiAlO3‐Modified Bi0.5(Na0.75K0.25)0.5TiO3 Lead‐Free Piezoelectric Ceramics , 2011 .

[14]  Hou Jinli,et al.  MICROSTRUCTURE AND ELECTRICAL PROPERTIES , 2013 .

[15]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[16]  Jianguo Zhu,et al.  Modification of both d33 and TC in a potassium-sodium niobate ternary system. , 2015, Dalton transactions.

[17]  Jianguo Zhu,et al.  Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics , 2014 .

[18]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[19]  R. Zuo,et al.  Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth , 2013 .

[20]  N. Vittayakorn,et al.  Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique , 2015 .

[21]  Jianguo Zhu,et al.  Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system , 2014 .

[22]  Xinyu Liu,et al.  High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering , 2013 .

[23]  O. P. Thakur,et al.  Synthesis and ferroelectric behavior of Gd doped BNT ceramics , 2014 .

[24]  Laijun Liu,et al.  Dielectric properties of BiAlO3-modified (Na, K, Li)NbO3 lead-free ceramics , 2016 .

[25]  T. Karaki,et al.  Morphotropic Phase Boundary Slope of (K,Na,Li)NbO3–BaZrO3 Binary System Adjusted Using Third Component (Bi,Na)TiO3 Additive , 2013 .

[26]  Jianguo Zhu,et al.  CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability , 2008 .

[27]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.

[28]  L. Pardo,et al.  Lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 piezoelectric ceramics processed below 1300 °C , 2014 .

[29]  Y. Liu,et al.  Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics , 2012 .

[30]  Changrong Zhou,et al.  Enhancement of the dielectric, piezoelectric, and ferroelectric properties in BiYbO3-modified (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics , 2014 .

[31]  Jianguo Zhu,et al.  Giant d33 in (K,Na)(Nb,Sb)O3-(Bi,Na,K, Li)ZrO3 based lead-free piezoelectrics with high Tc , 2013 .

[32]  Jingfeng Li,et al.  Compositional Dependence of Piezoelectric Properties in NaxK1−xNbO3 Lead‐Free Ceramics Prepared by Spark Plasma Sintering , 2006 .

[33]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[34]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[35]  Xiaohong Zhu,et al.  Microstructure and electrical properties of (Na0.5K0.5)1−2xMgxNbO3–Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics , 2014 .

[36]  Jianguo Zhu,et al.  Phase structure, electrical properties, and stability of 0.96(K0.48Na0.52)1−xLixNbO3–0.04Bi0.5Na0.5ZrO3 lead-free piezoceramics , 2014 .

[37]  H. Nagata,et al.  Present Status of Non-Lead-Based Piezoelectric Ceramics , 1998 .

[38]  Jianguo Zhu,et al.  High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity , 2014 .