Matrix-Variate Dirichlet Process Priors with Applications
暂无分享,去创建一个
[1] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[2] Warren B. Powell,et al. Dirichlet Process Mixtures of Generalized Linear Models , 2009, J. Mach. Learn. Res..
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] David B. Dunson,et al. Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.
[5] Hal Daumé,et al. Infinite Predictor Subspace Models for Multitask Learning , 2010, AISTATS.
[6] Zhihua Zhang,et al. Matrix-Variate Dirichlet Process Mixture Models , 2010, AISTATS.
[7] S. MacEachern,et al. Minimally informative prior distributions for non‐parametric Bayesian analysis , 2010 .
[8] Hal Daumé,et al. Multi-Label Prediction via Sparse Infinite CCA , 2009, NIPS.
[9] Lawrence Carin,et al. Nonparametric factor analysis with beta process priors , 2009, ICML '09.
[10] Babak Shahbaba,et al. Nonlinear Models Using Dirichlet Process Mixtures , 2007, J. Mach. Learn. Res..
[11] M. West,et al. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.
[12] L. Carin,et al. The Matrix Stick-Breaking Process , 2008 .
[13] C. Rasmussen,et al. Dirichlet Process Mixtures of Factor Analysers , 2007 .
[14] Lawrence Carin,et al. Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..
[15] N. Pillai,et al. Bayesian density regression , 2007 .
[16] Hans-Peter Kriegel,et al. Supervised probabilistic principal component analysis , 2006, KDD '06.
[17] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[18] Ambuj Tewari,et al. On the Consistency of Multiclass Classification Methods , 2007, J. Mach. Learn. Res..
[19] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[20] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[21] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[22] Refik Soyer,et al. Bayesian Methods for Nonlinear Classification and Regression , 2004, Technometrics.
[23] Rich Caruana,et al. Multitask Learning , 1997, Machine Learning.
[24] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[25] Michael I. Jordan,et al. On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.
[26] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[27] D. Dittmar. Slice Sampling , 2000 .
[28] A. Rukhin. Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.
[29] Eric R. Ziegel,et al. Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.
[30] R. J. Alcock. Time-Series Similarity Queries Employing a Feature-Based Approach , 1999 .
[31] Joseph G. Ibrahim,et al. Semiparametric Bayesian Methods for Random Effects Models , 1998 .
[32] Steven N. MacEachern,et al. Computational Methods for Mixture of Dirichlet Process Models , 1998 .
[33] Alexander J. Smola,et al. Learning with kernels , 1998 .
[34] Trevor Hastie,et al. Predicting multivariate responses in multiple linear regression - Discussion , 1997 .
[35] S. MacEachern,et al. A semiparametric Bayesian model for randomised block designs , 1996 .
[36] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[37] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[38] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[39] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[40] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[41] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.