Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly cou- ples the detailed snowpack model Crocus with the atmo- spheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and in- cludes the sublimation of suspended snow particles. The cou- pled model is evaluated against data collected around the ex- perimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed represen- tation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Re- sults show that the model captures the main structures of at- mospheric flow in alpine terrain. However, at 50 m grid spac- ing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When acti- vated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3 % over the calcu- lation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

[1]  Robert J. Gurney,et al.  Simulating wind-affected snow accumulations at catchment to basin scales , 2013 .

[2]  E. Martin,et al.  A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting , 1999, Journal of Glaciology.

[3]  Michael Lehning,et al.  Equilibrium Saltation: Mass Fluxes, Aerodynamic Entrainment, and Dependence on Grain Properties , 2002 .

[4]  S. Mobbs,et al.  Numerical modelling of blowing snow , 1993 .

[5]  M. Nemoto,et al.  Numerical simulation of snow saltation and suspension in a turbulent boundary layer , 2004 .

[6]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[7]  E. Brun,et al.  Impact Of Snow Drift On The Antarctic Ice Sheet Surface Mass Balance: Possible Sensitivity To Snow-Surface Properties , 2001 .

[8]  E. Martin,et al.  A meteorological estimation of relevant parameters for snow models , 1993 .

[9]  Tadashi Kimura,et al.  Field test of a new snow-particle counter (SPC) system , 1993 .

[10]  F. Chow,et al.  High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain , 2008 .

[11]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[12]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[13]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[14]  S. Palm,et al.  Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation , 2012 .

[15]  Evelyne Richard,et al.  Numerical simulations of three different MAP IOPs and the associated microphysical processes , 2006 .

[16]  G. Jaubert,et al.  Föhn flow and stable air mass in the Rhine valley: The beginning of a MAP event , 2004 .

[17]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[18]  J. T. Jenkins,et al.  Saltating particles in a turbulent boundary layer: experiment and theory , 2009, Journal of Fluid Mechanics.

[19]  John W. Pomeroy,et al.  Saltation of snow , 1990 .

[20]  Karsten Schulz,et al.  High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields , 2010 .

[21]  Alain Pietroniro,et al.  On the importance of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains , 2010 .

[22]  J. Deardorff Numerical Investigation of Neutral and Unstable Planetary Boundary Layers , 1972 .

[23]  M. Nemoto,et al.  Blowing snow at Mizuho station, Antarctica , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[25]  Christopher A. Hiemstra,et al.  Simulating complex snow distributions in windy environments using SnowTran-3D , 2007, Journal of Glaciology.

[26]  Influence of Strong Winds on Snow Distribution and Avalanche Activity , 1989 .

[27]  N. Street,et al.  Office of Naval Research , 2022 .

[28]  A. Rutgersson,et al.  Applying a mesoscale atmospheric model to Svalbard glaciers , 2012 .

[29]  Wind and drifting-snow gust factor in an Alpine context , 2011, Annals of Glaciology.

[30]  M. Lehning,et al.  Inhomogeneous precipitation distribution and snow transport in steep terrain , 2008 .

[31]  Michael Lehning,et al.  Persistence in intra‐annual snow depth distribution: 1. Measurements and topographic control , 2011 .

[32]  P. Taylor The Thermodynamic Effects of Sublimating, Blowing Snow in the Atmospheric Boundary Layer , 1998 .

[33]  John W. Pomeroy,et al.  Turbulent fluxes during blowing snow: field tests of model sublimation predictions , 1999 .

[34]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[35]  Michael Lehning,et al.  Snow saltation threshold measurements in a drifting-snow wind tunnel , 2006 .

[36]  Michael Lehning,et al.  Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for Mountains , 2010 .

[37]  P. Gauer Blowing and drifting snow in alpine terrain: A physically-based numerical model and related field measurements , 1999 .

[38]  J. C. R. Hunt,et al.  Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer , 2000, Journal of Fluid Mechanics.

[39]  Yoshihide Tominaga,et al.  PIV measurements of saltating snow particle velocity in a boundary layer developed in a wind tunnel , 2013, J. Vis..

[40]  B. J. Mason,et al.  The evaporation of ice spheres and ice crystals , 1966 .

[41]  J. Mandel,et al.  Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011 , 2011, 1102.1343.

[42]  A. Prokop,et al.  The atmospheric snow-transport model: SnowDrift3D , 2011, Journal of Glaciology.

[43]  J. Smith,et al.  Nested Mesoscale Large-Eddy Simulations with WRF: Performance in Real Test Cases , 2012 .

[44]  Michael Sørensen,et al.  On the rate of aeolian sand transport , 2004 .

[45]  E. Martin,et al.  Occurrence of blowing snow events at an alpine site over a 10-year period: Observations and modelling , 2013 .

[46]  Michael Lehning,et al.  Fine‐scale modeling of the boundary layer wind field over steep topography , 2008 .

[47]  Wolfram Mauser,et al.  Is snow sublimation important in the alpine water balance , 2007 .

[48]  Satoru Yamaguchi,et al.  Verification of moisture budgets during drifting snow conditions in a cold wind tunnel , 2009 .

[49]  John W. Pomeroy,et al.  Steady-state suspension of snow , 1992 .

[50]  Vincent Vionnet Études du transport de la neige par le vent en conditions alpines : observations et simulations à l'aide d'un modèle couplé atmosphère/manteau neigeux , 2012 .

[51]  P. Woodward,et al.  Application of the Piecewise Parabolic Method (PPM) to meteorological modeling , 1990 .

[52]  M. Bavay,et al.  Understanding snow-transport processes shaping the mountain snow-cover , 2010 .

[53]  M. Yau SIMULATION OF BLOWING SNOW IN THE CANADIAN ARCTIC USING A DOUBLE-MOMENT MODEL , 2001 .

[54]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[55]  Alexander Prokop,et al.  Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements , 2008 .

[56]  Alina Barbu,et al.  The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , 2012 .

[57]  M. Lehning,et al.  Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover , 2013 .

[58]  E. Martin,et al.  The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2 , 2012 .

[59]  V. Masson,et al.  Including Atmospheric Layers in Vegetation and Urban Offline Surface Schemes , 2009 .

[60]  C. G. Groot Zwaaftink,et al.  Seasonal simulation of drifting snow sublimation in Alpine terrain , 2013 .

[61]  J. Redelsperger,et al.  Methode de representation de la turbulence d'echelle inferieure a la maille pour un modele tri-dimensionnel de convection nuageuse , 1981 .

[62]  H. Löwe,et al.  Drifting snow sublimation: A high‐resolution 3‐D model with temperature and moisture feedbacks , 2011 .

[63]  N. Maeno,et al.  Snow ripples and their contribution to the mass transport in drifting snow , 1992 .

[64]  R. A. Schmidt,et al.  Vertical profiles of wind speed, snow concentration, and humidity in blowing snow , 1982 .

[65]  J. Stein Exploration of some convective regimes over the Alpine orography , 2004 .

[66]  Mohamed Naaim,et al.  Numerical simulation of drifting snow: erosion and deposition models , 1998 .

[67]  E. Martin,et al.  An energy and mass model of snow cover suitable for operational avalanche forecasting , 1989 .

[68]  R. Bintanja Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description , 2000 .

[69]  V. Constantinescu Slow Viscous Flow , 1995 .

[70]  Y. Durand,et al.  Improvement of a numerical snow drift model and field validation , 2005 .

[71]  T. Sauter,et al.  Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard , 2013 .

[72]  Nilton O. Renno,et al.  A comprehensive numerical model of steady state saltation (COMSALT) , 2009 .

[73]  R. Bintanja Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer , 2001 .

[74]  M. E. Rindol Validation of an application for forecasting blowing snow , 2010 .

[75]  J. Redelsperger,et al.  A Simple And General Subgrid Model Suitable Both For Surface Layer And Free-Stream Turbulence , 2001 .

[76]  S. Déry,et al.  A Bulk Blowing Snow Model , 1999 .

[77]  W. Skamarock Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step Transport Schemes , 2006 .

[78]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[79]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[80]  M. Sørensen An analytic model of wind-blown sand transport , 1991 .

[81]  Karsten Schulz,et al.  The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions , 2012 .