Sampling from Potts on random graphs of unbounded degree via random-cluster dynamics

We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability $p \in (0,1)$ and a cluster weight $q>0$. We establish that for every $q\ge 1$, the random-cluster Glauber dynamics mixes in optimal $\Theta(n\log n)$ steps on $n$-vertex random graphs having a prescribed degree sequence with bounded average branching $\gamma$ throughout the full high-temperature uniqueness regime $p<p_u(q,\gamma)$. The family of random graph models we consider includes the Erd\H{o}s--R\'enyi random graph $G(n,\gamma/n)$, and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erd\H{o}s--R\'enyi random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our $\Theta(n \log n)$ bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures.

[1]  L. A. Goldberg,et al.  Metastability of the Potts ferromagnet on random regular graphs , 2022, ICALP.

[2]  Yitong Yin,et al.  Rapid mixing of Glauber dynamics via spectral independence for all degrees , 2021, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).

[3]  L. A. Goldberg,et al.  Fast mixing via polymers for random graphs with unbounded degree , 2021, APPROX-RANDOM.

[4]  Reza Gheissari,et al.  Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness , 2021, Communications in Mathematical Physics.

[5]  Alistair Sinclair,et al.  The Critical Mean-field Chayes-Machta Dynamics , 2021, APPROX-RANDOM.

[6]  Eric Vigoda,et al.  The Swendsen-Wang Dynamics on Trees , 2020, APPROX-RANDOM.

[7]  Matthew Jenssen,et al.  Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs , 2020, ArXiv.

[8]  Will Perkins,et al.  Efficient sampling and counting algorithms for the Potts model on ℤᵈ at all temperatures , 2020, STOC.

[9]  Y. Peres,et al.  Exponentially slow mixing in the mean-field Swendsen–Wang dynamics , 2020 .

[10]  Reza Gheissari,et al.  Quasi‐polynomial mixing of critical two‐dimensional random cluster models , 2019, Random Struct. Algorithms.

[11]  Shirshendu Ganguly,et al.  Information percolation and cutoff for the random‐cluster model , 2018, Random Struct. Algorithms.

[12]  Eric Vigoda,et al.  Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions , 2019, APPROX-RANDOM.

[13]  Matan Harel,et al.  Finitary codings for the random-cluster model and other infinite-range monotone models , 2018, 1808.02333.

[14]  Reza Gheissari,et al.  Mixing Times of Critical Two‐Dimensional Potts Models , 2018 .

[15]  Eric Vigoda,et al.  Sampling in Uniqueness from the Potts and Random-Cluster Models on Random Regular Graphs , 2018, APPROX-RANDOM.

[16]  Yuval Peres,et al.  Exponentially slow mixing in the mean-field Swendsen-Wang dynamics , 2017, SODA.

[17]  Y. Peres,et al.  Markov Chains and Mixing Times: Second Edition , 2017 .

[18]  Mark Jerrum,et al.  Random cluster dynamics for the Ising model is rapidly mixing , 2016, SODA.

[19]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[20]  Alistair Sinclair,et al.  Random-cluster dynamics in Z 2 , 2016, SODA 2016.

[21]  Eric Vigoda,et al.  Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results , 2013, SIAM J. Comput..

[22]  Catherine S. Greenhill,et al.  Mixing of the Glauber dynamics for the ferromagnetic Potts model , 2013, Random Struct. Algorithms.

[23]  Eric Vigoda,et al.  Swendsen‐Wang algorithm on the mean‐field Potts model , 2015, APPROX-RANDOM.

[24]  Alistair Sinclair,et al.  Dynamics for the Mean-field Random-cluster Model , 2014, APPROX-RANDOM.

[25]  Mario Ullrich,et al.  Swendsen-Wang Is Faster than Single-Bond Dynamics , 2012, SIAM J. Discret. Math..

[26]  Elchanan Mossel,et al.  Exact thresholds for Ising–Gibbs samplers on general graphs , 2009, The Annals of Probability.

[27]  Allan Sly,et al.  Communications in Mathematical Physics The Replica Symmetric Solution for Potts Models on d-Regular Graphs , 2022 .

[28]  Paul Cuff,et al.  Glauber Dynamics for the Mean-Field Potts Model , 2012, 1204.4503.

[29]  W. Marsden I and J , 2012 .

[30]  Y. Peres,et al.  Can Extra Updates Delay Mixing? , 2011, 1112.0603.

[31]  Y. Peres,et al.  A power law of order 1/4 for critical mean-field Swendsen-Wang dynamics , 2011, 1107.2970.

[32]  Andrea Montanari,et al.  The spread of innovations in social networks , 2010, Proceedings of the National Academy of Sciences.

[33]  Christian Borgs,et al.  Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point , 2010, ArXiv.

[34]  Stuart Geman,et al.  Markov Random Field Image Models and Their Applications to Computer Vision , 2010 .

[35]  S. Janson The Probability That a Random Multigraph is Simple , 2006, Combinatorics, Probability and Computing.

[36]  Elchanan Mossel,et al.  Rapid mixing of Gibbs sampling on graphs that are sparse on average , 2007, SODA '08.

[37]  Martin E. Dyer,et al.  Dobrushin Conditions and Systematic Scan , 2006, Combinatorics, Probability and Computing.

[38]  Geoffrey E. Hinton,et al.  Modeling image patches with a directed hierarchy of Markov random fields , 2007, NIPS.

[39]  Martin E. Dyer,et al.  Matrix norms and rapid mixing for spin systems , 2007, ArXiv.

[40]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[41]  A. Frieze,et al.  Randomly coloring sparse random graphs with fewer colors than the maximum degree , 2006, Random Struct. Algorithms.

[42]  Thomas P. Hayes A simple condition implying rapid mixing of single-site dynamics on spin systems , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[43]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[44]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[45]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[47]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[48]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[49]  Johan Jonasson,et al.  The random cluster model on a general graph and a phase transition characterization of nonamenability , 1999 .

[50]  M. Henkel Finite-Size Scaling , 1999 .

[51]  Jonathan Machta,et al.  Graphical representations and cluster algorithms I. Discrete spin systems , 1997 .

[52]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[53]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[54]  Olle Häggström,et al.  The random-cluster model on a homogeneous tree , 1996 .

[55]  Glenn Ellison Learning, Local Interaction, and Coordination , 1993 .

[56]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[57]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[58]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[59]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[60]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[61]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[62]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[63]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[64]  Peter Secretan Learning , 1965, Mental Health.

[65]  TYLER HELMUTH,et al.  PR ] 2 0 Se p 20 19 EFFICIENT SAMPLING AND COUNTING ALGORITHMS FOR THE POTTS MODEL ON Z d AT ALL TEMPERATURES , 2022 .