Efficient models for timetable information in public transportation systems

We consider two approaches that model timetable information in public transportation systems as shortest-path problems in weighted graphs. In the time-expanded approach, every event at a station, e.g., the departure of a train, is modeled as a node in the graph, while in the time-dependent approach the graph contains only one node per station. Both approaches have been recently considered for (a simplified version of) the earliest arrival problem, but little is known about their relative performance. Thus far, there are only theoretical arguments in favor of the time-dependent approach. In this paper, we provide the first extensive experimental comparison of the two approaches. Using several real-world data sets, we evaluate the performance of the basic models and of several new extensions towards realistic modeling. Furthermore, new insights on solving bicriteria optimization problems in both models are presented. The time-expanded approach turns out to be more robust for modeling more complex scenarios, whereas the time-dependent approach shows a clearly better performance.

[1]  Mark Ziegelmann Constrained shortest paths and related problems , 2001 .

[2]  Ariel Orda,et al.  Minimum weight paths in time-dependent networks , 1991, Networks.

[3]  Christos D. Zaroliagis,et al.  Using Multi-level Graphs for Timetable Information in Railway Systems , 2002, ALENEX.

[4]  Rolf H. Möhring,et al.  Verteilte Verbindungssuche im öffentlichen Personenverkehr Graphentheoretische Modelle und Algorithmen , 1999, Angewandte Mathematik, insbesondere Informatik.

[5]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[6]  Christos D. Zaroliagis,et al.  Geometric containers for efficient shortest-path computation , 2005, JEAL.

[7]  Karsten Weihe,et al.  Pareto Shortest Paths is Often Feasible in Practice , 2001, WAE.

[8]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 1999, JEAL.

[9]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[10]  WagnerDorothea,et al.  Efficient models for timetable information in public transportation systems , 2008 .

[11]  K. Nachtigall Time depending shortest-path problems with applications to railway networks , 1995 .

[12]  Patrick Horster Angewandte Mathematik, insbesondere Informatik: Beispiele erfolgreicher Wege zwischen Mathematik und Informatik [Festschrift anläßlich der Emeritierung von Professor Dr. Walter Oberschel] , 1999, Angewandte Mathematik, insbesondere Informatik.

[13]  Frank Schulz,et al.  Using Multi-Level Graphs for Timetable Information , 2001 .

[14]  Gerth Stølting Brodal,et al.  Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries , 2004, ATMOS.

[15]  Christos D. Zaroliagis,et al.  Towards Realistic Modeling of Time-Table Information through the Time-Dependent Approach , 2004, Electron. Notes Theor. Comput. Sci..

[16]  Christos D. Zaroliagis,et al.  Experimental Comparison of Shortest Path Approaches for Timetable Information , 2004, ALENEX/ANALC.

[17]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[18]  Karsten Weihe,et al.  Getting Train Timetables into the Main Storage , 2002, Electron. Notes Theor. Comput. Sci..