Efficient models for timetable information in public transportation systems
暂无分享,去创建一个
Christos D. Zaroliagis | Dorothea Wagner | Evangelia Pyrga | Frank Schulz | D. Wagner | C. Zaroliagis | F. Schulz | Evangelia Pyrga
[1] Mark Ziegelmann. Constrained shortest paths and related problems , 2001 .
[2] Ariel Orda,et al. Minimum weight paths in time-dependent networks , 1991, Networks.
[3] Christos D. Zaroliagis,et al. Using Multi-level Graphs for Timetable Information in Railway Systems , 2002, ALENEX.
[4] Rolf H. Möhring,et al. Verteilte Verbindungssuche im öffentlichen Personenverkehr Graphentheoretische Modelle und Algorithmen , 1999, Angewandte Mathematik, insbesondere Informatik.
[5] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[6] Christos D. Zaroliagis,et al. Geometric containers for efficient shortest-path computation , 2005, JEAL.
[7] Karsten Weihe,et al. Pareto Shortest Paths is Often Feasible in Practice , 2001, WAE.
[8] Karsten Weihe,et al. Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 1999, JEAL.
[9] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[10] WagnerDorothea,et al. Efficient models for timetable information in public transportation systems , 2008 .
[11] K. Nachtigall. Time depending shortest-path problems with applications to railway networks , 1995 .
[12] Patrick Horster. Angewandte Mathematik, insbesondere Informatik: Beispiele erfolgreicher Wege zwischen Mathematik und Informatik [Festschrift anläßlich der Emeritierung von Professor Dr. Walter Oberschel] , 1999, Angewandte Mathematik, insbesondere Informatik.
[13] Frank Schulz,et al. Using Multi-Level Graphs for Timetable Information , 2001 .
[14] Gerth Stølting Brodal,et al. Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries , 2004, ATMOS.
[15] Christos D. Zaroliagis,et al. Towards Realistic Modeling of Time-Table Information through the Time-Dependent Approach , 2004, Electron. Notes Theor. Comput. Sci..
[16] Christos D. Zaroliagis,et al. Experimental Comparison of Shortest Path Approaches for Timetable Information , 2004, ALENEX/ANALC.
[17] Ariel Orda,et al. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.
[18] Karsten Weihe,et al. Getting Train Timetables into the Main Storage , 2002, Electron. Notes Theor. Comput. Sci..