Phase retrieval with transverse translation diversity: a nonlinear optimization approach.

We develop and test a nonlinear optimization algorithm for solving the problem of phase retrieval with transverse translation diversity, where the diverse far-field intensity measurements are taken after translating the object relative to a known illumination pattern. Analytical expressions for the gradient of a squared-error metric with respect to the object, illumination and translations allow joint optimization of the object and system parameters. This approach achieves superior reconstructions, with respect to a previously reported technique [H. M. L. Faulkner and J. M. Rodenburg, Phys. Rev. Lett. 93, 023903 (2004)], when the system parameters are inaccurately known or in the presence of noise. Applicability of this method for samples that are smaller than the illumination pattern is explored.

[1]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[2]  J. Goodman Introduction to Fourier optics , 1969 .

[3]  W. Hoppe,et al.  Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten , 1969 .

[4]  Robert A. Gonsalves,et al.  Wavefront Sensing By Phase Retrieval , 1979, Optics & Photonics.

[5]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[6]  Robert A. Gonsalves,et al.  Phase Retrieval And Diversity In Adaptive Optics , 1982 .

[7]  James R. Fienup,et al.  Phase-retrieval stagnation problems and solutions , 1986 .

[8]  J. Fienup,et al.  Image synthesis from nonimaged laser-speckle patterns. , 1987, Optics letters.

[9]  R G Paxman,et al.  Phase retrieval from experimental far-field speckle data. , 1988, Optics letters.

[10]  James R. Fienup,et al.  Optical misalignment sensing and image reconstruction using phase diversity , 1988 .

[11]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  James R. Fienup,et al.  Joint estimation of object and aberrations by using phase diversity , 1992 .

[13]  Ryuzo Ueda,et al.  NUMERICAL INVESTIGATION OF THE ITERATIVE PHASE-RETRIEVAL STAGNATION PROBLEM : TERRITORIES OF CONVERGENCE OBJECTS AND HOLES IN THEIR BOUNDARIES , 1997 .

[14]  J. Fienup Invariant error metrics for image reconstruction. , 1997, Applied optics.

[15]  N. Nakajima,et al.  Phase Retrieval From Fresnel Zone Intensity Measurements by use of Gaussian Filtering. , 1998, Applied optics.

[16]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[17]  R. J.,et al.  Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint , 2002 .

[18]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[19]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[22]  Donald R. McGaughey,et al.  Parallel multiframe blind deconvolution using wavelength diversity , 2004, SPIE Optics + Photonics.

[23]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[24]  James R. Fienup,et al.  Method of phase diversity in multi-aperture systems utilizing individual sub-aperture control , 2005, SPIE Optics + Photonics.

[25]  H M L Faulkner,et al.  Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy. , 2005, Ultramicroscopy.

[26]  James R Fienup,et al.  Nonlinear optimization algorithm for retrieving the full complex pupil function. , 2006, Optics express.

[27]  Stefan Eisebitt,et al.  Magnetic imaging with soft x-ray spectroholography , 2006 .

[28]  James R Fienup Lensless coherent imaging by phase retrieval with an illumination pattern constraint. , 2006, Optics express.

[29]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  A. G. Cullis,et al.  Transmission microscopy without lenses for objects of unlimited size. , 2007, Ultramicroscopy.

[31]  Manuel Guizar-Sicairos,et al.  Holography with extended reference by autocorrelation linear differential operation. , 2007, Optics express.

[32]  D. Paganin,et al.  A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. , 2007, Optics express.

[33]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[34]  James R Fienup,et al.  Phase retrieval with Fourier-weighted projections. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[36]  James R Fienup,et al.  Amplitude metrics for field retrieval with hard-edged and uniformly illuminated apertures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.