暂无分享,去创建一个
Xiaosheng Zhuang | Gitta Kutyniok | Morteza Shahram | G. Kutyniok | X. Zhuang | M. Shahram | Gitta Kutyniok | Morteza Shahram
[1] Gitta Kutyniok,et al. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..
[2] Bin Han,et al. Adaptive Multiresolution Analysis Structures and Shearlet Systems , 2011, SIAM J. Numer. Anal..
[3] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[4] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] MalekiArian,et al. Reproducible Research in Computational Harmonic Analysis , 2009 .
[6] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[7] Wang-Q Lim,et al. Compactly Supported Shearlets , 2010, 1009.4359.
[8] Arian Maleki,et al. Reproducible Research in Computational Harmonic Analysis , 2009, Computing in Science & Engineering.
[9] G. Kutyniok,et al. Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.
[10] E. Candès,et al. Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.
[11] E. Candès. New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .
[12] K. Gröchenig,et al. Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .
[13] R. Lipsman. Abstract harmonic analysis , 1968 .
[14] E. Candès,et al. Continuous curvelet transform , 2003 .
[15] Wang-Q Lim,et al. The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames , 2010, IEEE Transactions on Image Processing.
[16] Gitta Kutyniok,et al. Parabolic Molecules , 2012, Found. Comput. Math..
[17] D. Labate,et al. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .
[18] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[19] Felix J. Herrmann,et al. Non-parametric seismic data recovery with curvelet frames , 2008 .
[20] Ronald R. Coifman,et al. A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform , 2008, SIAM J. Sci. Comput..
[21] K. Gröchenig. A discrete theory of irregular sampling , 1993 .
[22] Bin Han,et al. A Unitary Extension Principle for Shearlet Systems , 2009, 0912.4529.
[23] K. Gröchenig. RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .
[24] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[25] D. Labate,et al. Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.
[26] Gitta Kutyniok,et al. Microlocal Analysis of the Geometric Separation Problem , 2010, ArXiv.
[27] G. Easley,et al. Sparse directional image representations using the discrete shearlet transform , 2008 .
[28] David H. Bailey,et al. The Fractional Fourier Transform and Applications , 1991, SIAM Rev..
[29] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[30] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[31] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..
[32] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[33] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .