Sensitivity of diffusion weighted steady state free precession to anisotropic diffusion

Diffusion‐weighted steady‐state free precession (DW‐SSFP) accumulates signal from multiple echoes over several TRs yielding a strong sensitivity to diffusion with short gradient durations and imaging times. Although the DW‐SSFP signal is well characterized for isotropic, Gaussian diffusion, it is unclear how the DW‐SSFP signal propagates in inhomogeneous media such as brain tissue. This article presents a more general analytical expression for the DW‐SSFP signal which accommodates Gaussian and non‐Gaussian spin displacement probability density functions. This new framework for calculating the DW‐SSFP signal is used to investigate signal behavior for a single fiber, crossing fibers, and reflective barriers. DW‐SSFP measurements in the corpus callosum of a fixed brain are shown to be in good agreement with theoretical predictions. Further measurements in fixed brain tissue also demonstrate that 3D DW‐SSFP out‐performs 3D diffusion weighted spin echo in both SNR and CNR efficiency providing a compelling example of its potential to be used for high resolution diffusion tensor imaging. Magn Reson Med 60:405–413, 2008. © 2008 Wiley‐Liss, Inc.

[1]  Terry M Peters,et al.  Quantitative diffusion imaging with steady‐state free precession , 2004, Magnetic resonance in medicine.

[2]  Roland Bammer,et al.  Limitations of apparent diffusion coefficient‐based models in characterizing non‐gaussian diffusion , 2005, Magnetic resonance in medicine.

[3]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[4]  Karla L Miller,et al.  Nonlinear phase correction for navigated diffusion imaging , 2003, Magnetic resonance in medicine.

[5]  Richard R. Ernst,et al.  Diffusion and field‐gradient effects in NMR Fourier spectroscopy , 1974 .

[6]  H Gudbjartsson,et al.  Simultaneous calculation of flow and diffusion sensitivity in steady‐state free precession imaging , 1995, Magnetic resonance in medicine.

[7]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[8]  R B Buxton,et al.  The diffusion sensitivity of fast steady‐state free precession imaging , 1993, Magnetic resonance in medicine.

[9]  A Mohoric,et al.  Computer simulation of the spin-echo spatial distribution in the case of restricted self-diffusion. , 2001, Journal of magnetic resonance.

[10]  S. Patz,et al.  Analytical solution and verification of diffusion effect in SSFP , 1991, Magnetic resonance in medicine.

[11]  J. Pauly,et al.  Steady‐state diffusion‐weighted imaging of in vivo knee cartilage , 2004, Magnetic resonance in medicine.

[12]  H. C. Torrey Bloch Equations with Diffusion Terms , 1956 .

[13]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[14]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[15]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[16]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[17]  S. Patz,et al.  The application of steady‐state free precession to the study of very slow fluid flow , 1986, Magnetic resonance in medicine.

[18]  J. Frahm,et al.  MRI of “diffusion” in the human brain: New results using a modified CE‐FAST sequence , 1989, Magnetic resonance in medicine.

[19]  J. Hennig Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part I: Fundamental and not so fundamental properties of spin echoes , 1991 .

[20]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[21]  D. Le Bihan Intravoxel incoherent motion imaging using steady‐state free precession , 1988, Magnetic resonance in medicine.

[22]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[23]  D. Le Bihan,et al.  Intravoxel incoherent motion imaging using steady-state free precession , 1988 .

[24]  Ed X. Wu,et al.  Effect of diffusion on the steady-state magnetization with pulsed field gradients , 1990 .

[25]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[26]  L. Frank Anisotropy in high angular resolution diffusion‐weighted MRI , 2001, Magnetic resonance in medicine.