Reversal Distances for Strings with Few Blocks or Small Alphabets

We study the String Reversal Distance problem, an extension of the well-known Sorting by Reversals problem. String Reversal Distance takes two strings S and T as input, and asks for a minimum number of reversals to obtain T from S. We consider four variants: String Reversal Distance, String Prefix Reversal Distance (in which any reversal must include the first letter of the string), and the signed variants of these problems, namely Signed String Reversal Distance and Signed String Prefix Reversal Distance. We study algorithmic properties of these four problems, in connection with two parameters of the input strings: the number of blocks they contain (a block being maximal substring such that all letters in the substring are equal), and the alphabet size Σ. For instance, we show that Signed String Reversal Distance and Signed String Prefix Reversal Distance are NP-hard even if the input strings have only one letter.

[1]  Tao Jiang,et al.  MSOAR: A High-Throughput Ortholog Assignment System Based on Genome Rearrangement , 2007, J. Comput. Biol..

[2]  Leo van Iersel,et al.  Prefix Reversals on Binary and Ternary Strings , 2007, AB.

[3]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.

[4]  Xin Chen,et al.  Assignment of orthologous genes via genome rearrangement , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Tao Jiang,et al.  Some Algorithmic Challenges in Genome-Wide Ortholog Assignment , 2010, Journal of Computer Science and Technology.

[6]  David Alan Christie,et al.  Genome rearrangement problems , 1998 .

[7]  Vladimiro Sassone,et al.  Mathematical Foundations of Computer Science 2012 , 2012, Lecture Notes in Computer Science.

[8]  Marek Karpinski,et al.  .375-approximation Algorithm for Sorting by Reversals , 2011 .

[9]  W. Ewens,et al.  The chromosome inversion problem , 1982 .

[10]  Johannes Fischer,et al.  A 2-Approximation Algorithm for Sorting by Prefix Reversals , 2005, ESA.

[11]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.

[12]  Guillaume Fertin,et al.  Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.

[13]  A. J. Radcliffe,et al.  Reversals and Transpositions Over Finite Alphabets , 2005 .

[14]  Rajeev Raman,et al.  Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.

[15]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[16]  A. Lesk COMPUTATIONAL MOLECULAR BIOLOGY , 1988, Proceeding of Data For Discovery.

[17]  Robert W. Irving,et al.  Sorting Strings by Reversals and by Transpositions , 2001, SIAM J. Discret. Math..

[18]  Marek Karpinski,et al.  1.375-Approximation Algorithm for Sorting by Reversals , 2002, ESA.

[19]  Guillaume Fertin,et al.  Pancake Flipping Is Hard , 2011, MFCS.