Towards a belief-revision-based adaptive and context-sensitive information retrieval system

In an adaptive information retrieval (IR) setting, the information seekers' beliefs about which terms are relevant or nonrelevant will naturally fluctuate. This article investigates how the theory of belief revision can be used to model adaptive IR. More specifically, belief revision logic provides a rich representation scheme to formalize retrieval contexts so as to disambiguate vague user queries. In addition, belief revision theory underpins the development of an effective mechanism to revise user profiles in accordance with information seekers' changing information needs. It is argued that information retrieval contexts can be extracted by means of the information-flow text mining method so as to realize a highly autonomous adaptive IR system. The extra bonus of a belief-based IR model is that its retrieval behavior is more predictable and explanatory. Our initial experiments show that the belief-based adaptive IR system is as effective as a classical adaptive IR system. To our best knowledge, this is the first successful implementation and evaluation of a logic-based adaptive IR model which can efficiently process large IR collections.

[1]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[2]  Anthony Hunter Using Default Logic for Lexical Knowledge , 1997, ECSQARU-FAPR.

[3]  Peter Bruza,et al.  Towards context sensitive information inference , 2003, J. Assoc. Inf. Sci. Technol..

[4]  Theo Huibers,et al.  Towards an Axiomatic Aboutness Theory for Information Retrieval , 1998 .

[5]  Kam-Fai Wong,et al.  Aboutness from a commonsense perspective , 2000, J. Am. Soc. Inf. Sci..

[6]  Mary-Anne Williams,et al.  Iterated Theory Base Change: A Computational Model , 1995, IJCAI.

[7]  David E. Losada,et al.  Propositional Logic Representations for Documents and Queries: A Large-Scale Evaluation , 2003, ECIR.

[8]  Eric Raufaste,et al.  Empirical Evaluation of Possibility Theory in Human Radiological Diagnosis , 1998, ECAI.

[9]  Jian-Yun Nie,et al.  An information retrieval model based on modal logic , 1989, Inf. Process. Manag..

[10]  David M. Levy,et al.  To grow in wisdom: vannevar bush, information overload, and the life of leisure , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).

[11]  Kam-Fai Wong,et al.  Application of aboutness to functional benchmarking in information retrieval , 2001, TOIS.

[12]  Peter Bruza,et al.  Inferring query models by information flow analysis , 2002 .

[13]  Peter Gärdenfors,et al.  Knowledge in Flux: Modeling the Dynamics of Epistemic States , 2008 .

[14]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[15]  Mounia Lalmas,et al.  The use of logic in information retrieval modelling , 1998, The Knowledge Engineering Review.

[16]  Peter Bruza,et al.  Inferring query models by computing information flow , 2002, CIKM '02.

[17]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[18]  David E. Losada,et al.  Using a belief revision operator for document ranking in extended Boolean models , 1999, SIGIR '99.

[19]  Fabio Crestani,et al.  Logical Imaging and Probabilistic Information Retrieval , 1998 .

[20]  Graeme Hirst,et al.  Lexical chains as representations of context for the detection and correction of malapropisms , 1995 .

[21]  Peter Bruza,et al.  Investigating aboutness axioms using information fields , 1994, SIGIR '94.

[22]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[23]  Anthony Hunter,et al.  Intelligent text handling using default logic , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[24]  Steven Reece,et al.  Modelling information retrieval agents with belief revision , 1994, SIGIR '94.

[25]  Peter Gärdenfors,et al.  Revisions of Knowledge Systems Using Epistemic Entrenchment , 1988, TARK.

[26]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[27]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[28]  W. Lowe,et al.  Towards a Theory of Semantic Space , 2001 .

[29]  C. J. van Rijsbergen,et al.  A Non-Classical Logic for Information Retrieval , 1997, Comput. J..

[30]  Curt Burgess,et al.  Explorations in context space: Words, sentences, discourse , 1998 .

[31]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[32]  Peter Bruza,et al.  Preferential Models of Query by Navigation , 1998 .

[33]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[34]  Peter Ingwersen,et al.  Information retrieval in context: IRiX , 2005, SIGF.

[35]  Raymond Y. K. Lau Context sensitive text mining and belief revision for adaptive information retrieval , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[36]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[37]  Toshiki Kindo,et al.  Adaptive Personal Information Filtering System that Organizes Personal Profiles Automatically , 1997, IJCAI.

[38]  Fabio Crestani,et al.  Information Retrieval by Logical Imaging , 1995, J. Documentation.

[39]  Raymond Y. K. Lau,et al.  The State of the Art in Adaptive Information Agents , 2002, Int. J. Artif. Intell. Tools.

[40]  David A. Hull The TREC-7 Filtering Track: Description and Analysis , 1998, Text Retrieval Conference.

[41]  Jian-Yun Nie,et al.  Information Retrieval as Counterfactual , 1995, Comput. J..

[42]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[43]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[44]  Jian-Yun Nie An outline of a general model for information retrieval systems , 1988, SIGIR '88.

[45]  Fabrizio Sebastiani,et al.  Trends in ... a Critical Review: On the Role of Logic in Information Retrieval , 1998, Inf. Process. Manag..

[46]  Yi Zhang,et al.  Maximum likelihood estimation for filtering thresholds , 2001, SIGIR '01.

[47]  Umberto Straccia,et al.  A model of information retrieval based on a terminological logic , 1993, SIGIR.

[48]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[49]  Stephen E. Robertson,et al.  Comparing the Performance of Adaptive Filtering and Ranked Output Systems , 2002, Information Retrieval.

[50]  Amanda Spink,et al.  Issues of context in information retrieval (IR): an introduction to the special issue , 2002, Inf. Process. Manag..

[51]  David E. Losada,et al.  A Logical Model for Information Retrieval based on Propositional Logic and Belief Revision , 2001, Comput. J..

[52]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[53]  James P. Callan Learning while filtering documents , 1998, SIGIR '98.

[54]  Mary-Anne Williams Anytime Belief Revision , 1997, IJCAI.

[55]  Avi Arampatzis,et al.  The score-distributional threshold optimization for adaptive binary classification tasks , 2001, SIGIR '01.

[56]  Mounia Lalmas,et al.  A Logical Model of Information Retrieval Based on Situation Theory , 1993 .

[57]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[58]  Jean-François Bonnefon,et al.  Rationality in human nonmonotonic inference , 2000 .

[59]  Patrick F. Reidy An Introduction to Latent Semantic Analysis , 2009 .

[60]  David Poole The use of logic , 1987 .

[61]  David E. Losada,et al.  Embedding Term Similarity and Inverse Document Frequency into a Logical Model of Information , 2003, J. Assoc. Inf. Sci. Technol..

[62]  Colleen Cool The Concept of Situation in Information Science. , 2001 .

[63]  Arthur H. M. ter Hofstede,et al.  Maxi-Adjustment and Possibilistic Deduction for Adaptive Information Agents , 2001, J. Appl. Non Class. Logics.

[64]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[65]  Gianni Amati,et al.  Relevance as Deduction: A Logical View of Information Retrieval , 2000, ArXiv.

[66]  Jean-Pierre Chevallet,et al.  About Retrieval Models and Logic , 1992, Comput. J..

[67]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[68]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[69]  Pattie Maes,et al.  Agents that reduce work and information overload , 1994, CACM.

[70]  Raymond Y. K. Lau,et al.  Belief revision for adaptive information retrieval , 2004, SIGIR '04.

[71]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[72]  Marco Schaerf,et al.  The complexity of model checking for propositional default logics , 2005, Data Knowl. Eng..

[73]  Lakhdar Sais,et al.  Combining Nonmonotonic Reasoning and Belief Revision: A Practical Approach , 1998, AIMSA.

[74]  Peter Bruza,et al.  Discovering information flow suing high dimensional conceptual space , 2001, SIGIR '01.

[75]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[76]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[77]  Arthur H. M. ter Hofstede,et al.  A Study of Belief Revision in the Context of Adaptive Information Filtering , 1999, ICSC.