Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling.

[1]  Hans Leo Lukas,et al.  Thermodynamic assessment of the Al-Ni system , 2016 .

[2]  Jonathan M Cullen,et al.  Mapping the global flow of aluminum: from liquid aluminum to end-use goods. , 2013, Environmental science & technology.

[3]  Shinichiro Nakamura,et al.  Thermodynamic analysis of separation of alloying elements in recycling of end-of-life titanium products , 2012 .

[4]  Shinichiro Nakamura,et al.  Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment , 2011, Science and technology of advanced materials.

[5]  Kenichi Nakajima,et al.  Thermodynamic analysis for the controllability of elements in the recycling process of metals. , 2011, Environmental science & technology.

[6]  Shinichiro Nakamura,et al.  Thermodynamic analysis of contamination by alloying elements in aluminum recycling. , 2010, Environmental science & technology.

[7]  R. Jeantet,et al.  Available online at: , 2009 .

[8]  J. Ågren,et al.  Thermodynamic assessments of the Ni–Pt and Al–Ni–Pt systems , 2009 .

[9]  F. Zheng,et al.  Thermodynamic assessment of Al–Cu–Dy system , 2009 .

[10]  H. Amini Mashhadi,et al.  Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux , 2009 .

[11]  Honghui Xu,et al.  Experimental investigation and thermodynamic modeling of the Al–Cu–Si system , 2009 .

[12]  Kenichi Nakajima,et al.  Evaluation Method of Metal Resource Recyclability Based on Thermodynamic Analysis , 2009 .

[13]  O. Løvvik,et al.  Thermodynamic modeling of the Na–Al–Ti–H system and Ti dissolution in sodium alanates , 2008 .

[14]  Baoliang Zhang,et al.  Thermodynamic description of the Al–Fe–Zr system , 2008 .

[15]  T. Abe,et al.  Thermodynamic re-assessment of the Al–Ir system , 2008 .

[16]  T. Velikanova,et al.  The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti , 2008 .

[17]  A. Babakhani,et al.  Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux , 2008 .

[18]  Honghui Xu,et al.  Experimental identification of the degenerated equilibrium and thermodynamic modeling in the Al-Nb system , 2008 .

[19]  Changrong Li,et al.  Thermodynamic modeling of the Al–Cr system , 2008 .

[20]  H. S. Liu,et al.  Thermodynamic optimization of the Al–Yb binary system , 2008 .

[21]  X. J. Liu,et al.  Thermodynamic assessment of the Zn-Y and Al-Zn-Y systems , 2008 .

[22]  T. Velikanova,et al.  The Al—B—Nb—Ti System. Part 1. Re-Assessment of the Constituent Binary Systems B—Nb and B—Ti on the Basis of New Experimental Data. , 2008 .

[23]  Xingjun Liu,et al.  Thermodynamic modeling of the Al-U and Co-U systems , 2008 .

[24]  R. M. Pillai,et al.  Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition , 2007 .

[25]  B. Hallstedt,et al.  Thermodynamic assessment of the Al–Li system , 2007 .

[26]  Yoshihiro Adachi,et al.  Dynamic Substance Flow Analysis of Aluminum and Its Alloying Elements , 2007 .

[27]  D. Scott MacKenzie,et al.  Handbook of Aluminum: Volume 2 Alloy Production and Materials Manufacturing , 2007 .

[28]  M. Medraj,et al.  A computational thermodynamic model of the Mg-Al-Ge system , 2006 .

[29]  T. Sanders,et al.  Thermodynamic assessment of the metastable liquidi in the Al–In, Al–Bi and Al–Pb systems , 2006 .

[30]  Yajun Liu,et al.  A contribution to the Al-Pb-Zn ternary system , 2005 .

[31]  J. Gröbner,et al.  Monotectic four-phase reaction in Al–Bi–Zn alloys , 2005 .

[32]  M. Medraj,et al.  Thermodynamic modeling of the Mg-Al-Sb system , 2005 .

[33]  S. Fries,et al.  The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data , 2004 .

[34]  Rainer Schmid-Fetzer,et al.  Experimental study and thermodynamic re-assessment of the Al-B system , 2004 .

[35]  Yong Liu,et al.  A thermodynamic description of the Al–Be system: Modeling and experiment , 2004 .

[36]  C. Robelin,et al.  Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system , 2004 .

[37]  C. Robelin,et al.  Thermodynamic evaluation and optimization of the (NaCl + KCl + AlCl3) system , 2004 .

[38]  H. Ohtani,et al.  Thermodynamic analysis of the Co–Al–C and Ni–Al–C systems by incorporating ab initio energetic calculations into the CALPHAD approach , 2004 .

[39]  M. Tsunekawa Refining processes of molten aluminium using solid flux , 2004 .

[40]  S. Sen,et al.  Numerical simulation of early stages of oxide formation in molten aluminium-magnesium alloys in a reverberatory furnace , 2004 .

[41]  Yong Du,et al.  Thermodynamic modeling of the Al–Sr system , 2003 .

[42]  B. Sundman,et al.  Thermodynamic assessment of the Al-Ru system , 2003 .

[43]  Zi-kui Liu,et al.  Thermodynamic assessment of the Al–Ca binary system using random solution and associate models , 2002 .

[44]  T. Utigard,et al.  The Roles of Molten Salts in the Treatment of Aluminum , 2001 .

[45]  P. Chartrand,et al.  Thermodynamic Evaluation and Optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2-SrCl2-BaCl2 System Using the Modified Quasichemical Model , 2001 .

[46]  Ping Zhang,et al.  A thermodynamic assessment of the La–Al system , 2000 .

[47]  P. Chartrand,et al.  Thermodynamic Evaluation and Optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2-SrCl2 System Using The Modified Quasichemical Model , 2000 .

[48]  Torstein A. Utigard,et al.  The properties and uses of fluxes in molten aluminum processing , 1998 .

[49]  D. Belitskus,et al.  Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide , 1977 .

[50]  M. Silva,et al.  Oxidation of Liquid Aluminum — Magnesium Alloys , 2016 .

[51]  K. Shimakage,et al.  Distribution behaviors of Al-M (M=Mg, Zn) alloys in KCl-NaCl binary melt and KCl-NaCl-AlCls ternary melt UDC: 669. 715: 546.32'131+. 33'131+. 623'131 , 2008 .

[52]  A. Saccone,et al.  The Al–R–Mg (R=Gd, Dy, Ho) systems. Part II: Thermodynamic modelling of the binary and ternary systems , 2003 .

[53]  Z. Du,et al.  A thermodynamic reassessment of the Al-As-Ga system , 2001 .

[54]  T. Ishikawa,et al.  Recovery of Aluminum Alloy from Aluminum Dross by Treatment of Chloride-Fluoride Mixture Melt , 1999 .

[55]  Yong Du,et al.  Thermodynamic analysis of reactions in the Al-N-Ta and Al-N-V systems , 1998 .

[56]  I. Barin Thermochemical data of pure substances , 1989 .

[57]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[58]  M. Gambino,et al.  Thermodynamic analysis of the germanium-based ternary systems (AlGaGe, AlGeSn, GaGeSn) , 1979 .

[59]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.