Gallager codes for CDMA applications .I. Generalizations, constructions, and performance bounds

We focus on applications of low-rate Gallager (1963) (low-density parity-check) codes in code-division multiple-access schemes. The codes that we present here achieve good performance with relatively short frame-lengths in additive white Gaussian noise channels and, perhaps more importantly, in fading channels. These codes can be decoded with low complexity by using iterative decoding procedures. We present a construction that yields good short frame-length Gallager codes. Bounds on the frame-error probability for a maximum-likelihood decoder are obtained.

[1]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[2]  Dariush Divsalar,et al.  Turbo codes for PCS applications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[3]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[4]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[5]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[6]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[7]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[8]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[9]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[10]  R. F. Ormondroyd,et al.  Performance of low-rate orthogonal convolutional codes in DS-CDMA applications , 1997 .

[11]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[12]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[13]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[14]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[15]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[16]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[17]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[18]  Barney Reiffen,et al.  Sequential decoding for discrete input memoryless channels , 1962, IRE Trans. Inf. Theory.

[19]  R. Fateman,et al.  A System for Doing Mathematics by Computer. , 1992 .

[20]  David J. C. MacKay,et al.  Good Codes Based on Very Sparse Matrices , 1995, IMACC.

[21]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[22]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[23]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[24]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[25]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[26]  T. Richardson,et al.  Design of provably good low-density parity check codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[27]  Andrew J. Viterbi,et al.  Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels , 1990, IEEE J. Sel. Areas Commun..

[28]  Richard E. Blahut,et al.  Digital transmission of information , 1990 .

[29]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[30]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..