Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique

In this paper, the three-dimensional adaptive finite element modeling is presented for cohesive fracture analysis of non-planer crack growth. The technique is performed based on the Zienkiewicz–Zhu error estimator by employing the modified superconvergent patch recovery procedure for the stress recovery. The Espinosa–Zavattieri bilinear constitutive equation is used to describe the cohesive tractions and displacement jumps. The 3D cohesive fracture element is employed to simulate the crack growth in a nonplanar curved pattern. The crack growth criterion is proposed in terms of the principal stress and its direction. Finally, several numerical examples are analyzed to demonstrate the validity and capability of proposed computational algorithm. The predicted crack growth simulation and corresponding loaddisplacement curves are compared with the experimental and other numerical results reported in literature.

[1]  Michael Kaliske,et al.  Discrete crack path prediction by an adaptive cohesive crack model , 2010 .

[2]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[3]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[4]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[5]  Amir R. Khoei,et al.  Three-dimensional data transfer operators in large plasticity deformations using modified-SPR technique , 2009 .

[6]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[7]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[8]  C. S. Krishnamoorthy,et al.  Adaptive finite element analysis of mode I fracture in cement‐based materials , 2001 .

[9]  F. X. Schneider,et al.  Gründung tumartiger Bauwerke: Dr. L. Varga und Dr. S. Kaliszky. 1974. Bauverlag Wiesbaden und Berlin. 253 Seiten, 126 Abbildungen, 17 Tabellen und 1 Tafel. DM 54, --. , 1976 .

[10]  G. Holzapfel,et al.  3 D Crack propagation in unreinforced concrete . A two-step algorithm for tracking 3 D crack paths , 2006 .

[11]  Amir R. Khoei,et al.  Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization , 2007 .

[12]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[13]  E. Lorentz,et al.  A mixed interface finite element for cohesive zone models , 2008 .

[14]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[15]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[16]  Amir R. Khoei,et al.  3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method , 2009 .

[17]  Viggo Tvergaard,et al.  Effect of strain-dependent cohesive zone model on predictions of crack growth resistance , 1996 .

[18]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[19]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[20]  Amir R. Khoei,et al.  Three-dimensional superconvergent patch recovery method and its application to data transferring in small-strain plasticity , 2007 .

[21]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[22]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[23]  M. Wnuk,et al.  Work of fracture and cohesive stress distribution resulting from triaxiality dependent cohesive zone model , 2002 .

[24]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[25]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[26]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[27]  H. Moslemi,et al.  Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique , 2009 .

[28]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[29]  Robert B. Haber,et al.  A moving cohesive interface model for fracture in creeping materials , 1997 .

[30]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[31]  J. Willis,et al.  A comparison of the fracture criteria of griffith and barenblatt , 1967 .

[32]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[33]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[34]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[35]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[36]  David H. Allen,et al.  Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm , 2000 .

[37]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[38]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[39]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[40]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .