A New Resource for German Causal Language

We present a new resource for German causal language, with annotations in context for verbs, nouns and prepositions. Our dataset includes 4,390 annotated instances for more than 150 different triggers. The annotation scheme distinguishes three different types of causal events (CONSEQUENCE , MOTIVATION, PURPOSE). We also provide annotations for semantic roles, i.e. of the cause and effect for the causal event as well as the actor and affected party, if present. In the paper, we present inter-annotator agreement scores for our dataset and discuss problems for annotating causal language. Finally, we present experiments where we frame causal annotation as a sequence labelling problem and report baseline results for the prediciton of causal arguments and for predicting different types of causation.

[1]  Roxana Gîrju,et al.  Automatic Detection of Causal Relations for Question Answering , 2003, ACL 2003.

[2]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[3]  Manfred Pinkal,et al.  Adding nominal spice to SALSA - frame-semantic annotation of German nouns and verbs , 2012, KONVENS.

[4]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[5]  Jesse Dunietz Annotating and Automatically Tagging Constructions of Causal Language , 2017 .

[6]  Manfred Stede,et al.  DiMLex: A Lexicon of Discorse Markers for Text Generation and Understanding , 1998, COLING-ACL.

[7]  Jaime G. Carbonell,et al.  The BECauSE Corpus 2.0: Annotating Causality and Overlapping Relations , 2017, LAW@ACL.

[8]  Yannick Versley,et al.  Discovery of Ambiguous and Unambiguous Discourse Connectives via Annotation Projection , 2010 .

[9]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[10]  Josef Ruppenhofer,et al.  Catching the Common Cause: Extraction and Annotation of Causal Relations and their Participants , 2017, LAW@ACL.

[11]  Martha Palmer,et al.  Transition-based Semantic Role Labeling Using Predicate Argument Clustering , 2011, RELMS@ACL.

[12]  Iryna Gurevych,et al.  WebAnno: A Flexible, Web-based and Visually Supported System for Distributed Annotations , 2013, ACL.

[13]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[14]  A. Markman,et al.  Categorization inside and outside the laboratory : essays in honor of Douglas L. Medin , 2005 .

[15]  Josef Ruppenhofer,et al.  FrameNet II: Extended theory and practice , 2006 .

[16]  Alan Lee,et al.  Discourse Annotation in the PDTB: The Next Generation , 2018, ACL 2018.

[17]  Leonard Talmy,et al.  Force Dynamics in Language and Cognition , 1987, Cogn. Sci..

[18]  Miriam Butt,et al.  Automatic Detection of Causal Relations in German Multilogs , 2014, EACL 2014.

[19]  Paramita Mirza,et al.  CATENA: CAusal and TEmporal relation extraction from NAtural language texts , 2016, COLING.

[20]  Jaime G. Carbonell,et al.  Automatically Tagging Constructions of Causation and Their Slot-Fillers , 2017, TACL.

[21]  Jaime G. Carbonell,et al.  Annotating Causal Language Using Corpus Lexicography of Constructions , 2015, LAW@NAACL-HLT.

[22]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[23]  R'emi Louf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[24]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[25]  P. Suppes A Probabilistic Theory Of Causality , 1970 .

[26]  Paramita Mirza,et al.  Annotating Causality in the TempEval-3 Corpus , 2014, EACL 2014.

[27]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[28]  Kathy McKeown,et al.  Identifying Causal Relations Using Parallel Wikipedia Articles , 2016, ACL.

[29]  Manfred Stede,et al.  Adding Semantic Relations to a Large-Coverage Connective Lexicon of German , 2016, LREC.

[30]  Lipika Dey,et al.  Automatic Extraction of Causal Relations from Text using Linguistically Informed Deep Neural Networks , 2018, SIGDIAL Conference.

[31]  Laure Vieu,et al.  A General Framework for the Annotation of Causality Based on FrameNet , 2016, LREC.

[32]  R. M. Kaplan,et al.  Knowledge-based acquisition of causal relationships in text , 1991 .

[33]  Sabine Brants,et al.  The TIGER Treebank , 2001 .

[34]  Phillip Wolff,et al.  Expressing causation in english and other languages , 2005 .

[35]  Livio Robaldo,et al.  The Penn Discourse TreeBank 2.0. , 2008, LREC.

[36]  Franziska Frankfurter,et al.  Constructions: A construction grammar approach to argument structure: Adele E. Goldberg, Chicago, IL: The University of Chicago Press, 1995. xi + 265 pp , 1998 .

[37]  Noah A. Smith,et al.  Transition-Based Dependency Parsing with Stack Long Short-Term Memory , 2015, ACL.

[38]  Cécile Grivaz,et al.  Human Judgements on Causation in French Texts , 2010, LREC.

[39]  James Pustejovsky,et al.  ISO-TimeML: An International Standard for Semantic Annotation , 2010, LREC.

[40]  Rashmi Prasad,et al.  The Penn Discourse Treebank , 2004, LREC.

[41]  H. Hedeland,et al.  Annotation of Explicit and Implicit Discourse Relations in the TüBa-D/Z Treebank , 2011 .

[42]  Erhard W. Hinrichs,et al.  The Tüba-D/Z Treebank: Annotating German with a Context-Free Backbone , 2004, LREC.

[43]  Jaime G. Carbonell,et al.  DeepCx: A transition-based approach for shallow semantic parsing with complex constructional triggers , 2018, EMNLP.