Bicubic hierarchical B-splines: Dimensions, completeness, and bases

In this paper, we discuss the bicubic C 2 spline spaces over hierarchical T-meshes in detail. The topological explanation of the dimension formula is further explored. We provide three necessary conditions for the completeness of the spline spaces. Based on the three conditions, the rule of the refinement of the hierarchical T-mesh is given, and a basis is constructed. The basis functions are linearly independent and complete, which provides a solution for the defects in the former literature. We explore the topologic explanation of the dimension formula.The configuration of the T-mesh has been given to guarantee the completeness.We construct a basis.Some elementary applications have been given.

[1]  Tae-wan Kim,et al.  Bases of T-meshes and the refinement of hierarchical B-splines , 2014, ArXiv.

[2]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[3]  Bert Jüttler,et al.  TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..

[4]  Bernard Mourrain,et al.  Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..

[5]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[6]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[7]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[8]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[9]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[10]  R. K. Mohanty,et al.  High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations , 2011, Appl. Math. Comput..

[11]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[12]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[13]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[14]  Ying Bai,et al.  On the Comparison of Trilinear, Cubic Spline, and Fuzzy Interpolation Methods in the High-Accuracy Measurements , 2010, IEEE Transactions on Fuzzy Systems.

[15]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[16]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[17]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[18]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[19]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[20]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[21]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[22]  Bert Jüttler,et al.  On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..

[23]  Meng Wu,et al.  Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..

[24]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[25]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[26]  François Mariotti,et al.  Dose‐response analyses using restricted cubic spline functions in public health research , 2010, Statistics in medicine.

[27]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[28]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[29]  Jun Wang,et al.  Parallel and adaptive surface reconstruction based on implicit PHT-splines , 2011, Comput. Aided Geom. Des..

[30]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[31]  Xinxiu Li,et al.  Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method , 2012 .

[32]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[33]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[34]  Fang Deng,et al.  Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..

[35]  Jiansong Deng,et al.  Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.