Bicubic hierarchical B-splines: Dimensions, completeness, and bases
暂无分享,去创建一个
[1] Tae-wan Kim,et al. Bases of T-meshes and the refinement of hierarchical B-splines , 2014, ArXiv.
[2] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[3] Bert Jüttler,et al. TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..
[4] Bernard Mourrain,et al. Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..
[5] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[6] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[7] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[8] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[9] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[10] R. K. Mohanty,et al. High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations , 2011, Appl. Math. Comput..
[11] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[12] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[13] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[14] Ying Bai,et al. On the Comparison of Trilinear, Cubic Spline, and Fuzzy Interpolation Methods in the High-Accuracy Measurements , 2010, IEEE Transactions on Fuzzy Systems.
[15] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[16] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[17] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[18] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[19] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[20] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[21] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[22] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[23] Meng Wu,et al. Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..
[24] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[25] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[26] François Mariotti,et al. Dose‐response analyses using restricted cubic spline functions in public health research , 2010, Statistics in medicine.
[27] Jiansong Deng,et al. Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..
[28] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[29] Jun Wang,et al. Parallel and adaptive surface reconstruction based on implicit PHT-splines , 2011, Comput. Aided Geom. Des..
[30] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[31] Xinxiu Li,et al. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method , 2012 .
[32] Ren-hong Wang. Multivariate Spline Functions and Their Applications , 2001 .
[33] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[34] Fang Deng,et al. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..
[35] Jiansong Deng,et al. Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.