Normalization for planar string diagrams and a quadratic equivalence algorithm

In the graphical calculus of planar string diagrams, equality is generated by exchange moves, which swap the heights of adjacent vertices. We show that left- and right-handed exchanges each give strongly normalizing rewrite strategies for connected string diagrams. We use this result to give a linear-time solution to the equivalence problem in the connected case, and a quadratic solution in the general case. We also give a stronger proof of the Joyal-Street coherence theorem, settling Selinger's conjecture on recumbent isotopy.

[1]  Paul-André Melliès,et al.  Game Semantics in String Diagrams , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[2]  Dan R. Ghica,et al.  Diagrammatic Semantics for Digital Circuits , 2017, CSL.

[3]  Neil Ghani,et al.  Compositional Game Theory , 2016, LICS.

[4]  Thomas Genet Completeness of Tree Automata Completion , 2018 .

[5]  Saunders MacLane,et al.  Natural Associativity and Commutativity , 1963 .

[6]  Yves Lafont,et al.  Diagram rewriting and operads , 2009 .

[7]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[8]  Aleks Kissinger,et al.  Open Graphs and Computational Reasoning , 2010, DCM.

[9]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[10]  James Dolan,et al.  The word problem for computads , 2005 .

[11]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[12]  S. Clark,et al.  A Compositional Distributional Model of Meaning , 2008 .

[13]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[14]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[15]  Samuel Mimram,et al.  Coherence of Gray Categories via Rewriting , 2018, FSCD.

[16]  Arnaud de Mesmay,et al.  Testing Graph Isotopy on Surfaces , 2014, Discret. Comput. Geom..

[17]  Jamie Vicary,et al.  Data structures for quasistrict higher categories , 2016, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[18]  Philippe Malbos,et al.  Polygraphs of finite derivation type , 2014, Mathematical Structures in Computer Science.

[19]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[20]  Günter Hotz Eine Algebraisierung des Syntheseproblems von Schaltkreisen II , 1965, J. Inf. Process. Cybern..

[21]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[22]  Ross Duncan,et al.  Verifying the Steane code with Quantomatic , 2013, QPL.

[23]  Günter Hotz,et al.  Eine Algebraisierung des Syntheseproblems von Schaltkreisen I , 1965, J. Inf. Process. Cybern..

[24]  Aleks Kissinger,et al.  Globular: an online proof assistant for higher-dimensional rewriting , 2016, Log. Methods Comput. Sci..

[25]  Samuel Mimram,et al.  Towards 3-Dimensional Rewriting Theory , 2014, Log. Methods Comput. Sci..

[26]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .