Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation

In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schrodinger equation in all dimensions based on the recent linear profile decomposition result. We then present a new proof of the linear profile decomposition for the Schroindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer for the Sobolev-Strichartz inequality.

[1]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[2]  F. Merle,et al.  Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D , 1998 .

[3]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[4]  S. Keraani On the Defect of Compactness for the Strichartz Estimates of the Schrödinger Equations , 2001 .

[5]  J. Ginibre,et al.  Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .

[6]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[7]  Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations , 1997, math/9704212.

[8]  M. Kunze On the Existence of a Maximizer for the Strichartz Inequality , 2003 .

[9]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[10]  A. Carbery,et al.  Heat-flow monotonicity of Strichartz norms , 2008, 0809.4783.

[11]  P. Gérard,et al.  High frequency approximation of solutions to critical nonlinear wave equations , 1999 .

[12]  On the role of quadratic oscillations in nonlinear Schrödinger equations , 2002, math/0212171.

[13]  Pascal B'egout,et al.  Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation , 2007, 1207.2028.

[14]  Damiano Foschi Maximizers for the Strichartz Inequality , 2004 .

[15]  J. Bourgain,et al.  Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .

[16]  E. Carneiro A Sharp Inequality for the Strichartz Norm , 2008, 0809.4054.

[17]  Vadim Zharnitsky,et al.  On sharp Strichartz inequalities in low dimensions , 2006 .

[18]  P. A. Tomas A restriction theorem for the Fourier transform , 1975 .

[19]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[20]  R. Carles,et al.  On the role of quadratic oscillations in nonlinear Schrödinger equations II. The $L^2$-critical case. , 2002, math/0212171.