Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation
暂无分享,去创建一个
[1] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[2] F. Merle,et al. Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D , 1998 .
[3] Robert S. Strichartz,et al. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .
[4] S. Keraani. On the Defect of Compactness for the Strichartz Estimates of the Schrödinger Equations , 2001 .
[5] J. Ginibre,et al. Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .
[6] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[7] Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations , 1997, math/9704212.
[8] M. Kunze. On the Existence of a Maximizer for the Strichartz Inequality , 2003 .
[9] 小澤 徹,et al. Nonlinear dispersive equations , 2006 .
[10] A. Carbery,et al. Heat-flow monotonicity of Strichartz norms , 2008, 0809.4783.
[11] P. Gérard,et al. High frequency approximation of solutions to critical nonlinear wave equations , 1999 .
[12] On the role of quadratic oscillations in nonlinear Schrödinger equations , 2002, math/0212171.
[13] Pascal B'egout,et al. Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation , 2007, 1207.2028.
[14] Damiano Foschi. Maximizers for the Strichartz Inequality , 2004 .
[15] J. Bourgain,et al. Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .
[16] E. Carneiro. A Sharp Inequality for the Strichartz Norm , 2008, 0809.4054.
[17] Vadim Zharnitsky,et al. On sharp Strichartz inequalities in low dimensions , 2006 .
[18] P. A. Tomas. A restriction theorem for the Fourier transform , 1975 .
[19] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[20] R. Carles,et al. On the role of quadratic oscillations in nonlinear Schrödinger equations II. The $L^2$-critical case. , 2002, math/0212171.