Multilevel optimal design of composite structures including materials with negative Poisson's ratio

Multilevel iterative optimal design procedures, horrowed from the theory of structural optimization by means of homogenization, are used in this paper for the optimal material design of composite material structures. The method is quite general and includes materials with appropriate microstructure, which may lead eventually to phenomenological, overall negative Poisson's ratios. The benefits of optimal structural design gained by this approach, together with the first attempts to explain the taskoriented microstructure of natural structures, are investigated by means of numerical examples, and simulation of, among others, human bones.

[1]  Pericles S. Theocaris,et al.  The influence of the mesophase on the transverse and longitudinal moduli and the major poisson ratio in fibrous composites , 1986 .

[2]  Karl J. Niklas,et al.  Plant Biomechanics: An Engineering Approach to Plant Form and Function , 1993 .

[3]  Sang-Hoon Park,et al.  A study on the shape extraction process in the structural topology optimization using homogenized material , 1997 .

[4]  Georgios E. Stavroulakis,et al.  A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory , 1994 .

[5]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[6]  Michael F. Ashby,et al.  The mechanical properties of cellular solids , 1983 .

[7]  C. Mattheck,et al.  DESIGN AND GROWTH RULES FOR BIOLOGICAL STRUCTURES AND THEIR APPLICATION TO ENGINEERING , 1990 .

[8]  Pericles S. Theocaris,et al.  The Mesophase Concept in Composites , 1987 .

[9]  P. Panagiotopoulos,et al.  Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics , 1996 .

[10]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[11]  C. S. Jog,et al.  Topology design with optimized, self‐adaptive materials , 1994 .

[12]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[13]  Georgios E. Stavroulakis,et al.  Optimal structural design via optimality criteria as a nonsmooth mechanics problem , 1995 .

[14]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[15]  Georgios E. Stavroulakis,et al.  Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach , 1997 .

[16]  Taiji Adachi,et al.  Mechanical Remodeling of Bone Structure Considering Residual Stress , 1996 .

[17]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[18]  H. Mlejnek,et al.  An engineer's approach to optimal material distribution and shape finding , 1993 .

[19]  Panagiotis D. Panagiotopoulos,et al.  Hemivariational Inequalities: Applications in Mechanics and Engineering , 1993 .

[20]  Georgios E. Stavroulakis,et al.  Optimal Structural Design in Nonsmooth Mechanics , 1998 .

[21]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[23]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[24]  M. Mucha,et al.  Rate of thermooxidation and polymer morphology , 1986 .

[25]  M. Zhou,et al.  Applications of the COC Algorithm in Layout Optimization , 1991 .

[26]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[27]  O. Sigmund,et al.  Checkerboard patterns in layout optimization , 1995 .

[28]  William Prager,et al.  Problems of Optimal Structural Design , 1968 .

[29]  David B. Burr,et al.  Structure, Function, and Adaptation of Compact Bone , 1989 .

[30]  H. P. Mlejnek,et al.  Some aspects of the genesis of structures , 1992 .