An entropy satisfying MUSCL scheme for systems of conservation laws

Summary.For the high-order numerical approximation of hyperbolic systems of conservation laws, we propose to use as a building principle an entropy diminishing criterion instead of the familiar total variation diminishing criterion introduced by Harten for scalar equations. Based on this new criterion, we derive entropy diminishing projections that ensure, both, the second order of accuracy and all of the classical discrete entropy inequalities. The resulting scheme is a nonlinear version of the classical Van Leer's MUSCL scheme. Strong convergence of this second order, entropy satisfying scheme is proved for systems of two equations. Numerical tests demonstrate the interest of our theory.

[1]  Convergence of second-order schemes for isentropic gas dynamics , 1993 .

[2]  D Serre Domaines invariants pour les systèmes hyperboliques de lois de conservation , 1987 .

[3]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[4]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[5]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[7]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[8]  Bernardo Cockburn,et al.  Convergence of the finite volume method for multidimensional conservation laws , 1995 .

[9]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[10]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[11]  Philippe G. LeFloch,et al.  Convergence of finite difference schemes for conservation laws in several space dimensions , 1991 .

[12]  R. J. Diperna Convergence of approximate solutions to conservation laws , 1983 .

[13]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[14]  Huanan Yang Nonlinear wave analysis and convergence of MUSCL schemes , 1990 .

[15]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[16]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[17]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[18]  Randall J. LeVeque,et al.  A geometric approach to high resolution TVD schemes , 1988 .

[19]  Philippe G. LeFloch,et al.  DISCRETE ENTROPY AND MONOTONICITY CRITERIA FOR HYPERBOLIC CONSERVATION LAWS , 1994 .

[20]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[21]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[22]  Gui-Qiang G. Chen,et al.  Entropy flux-splittings for hyperbolic conservation laws part I: General framework , 1995 .

[23]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[24]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[25]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[26]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[27]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[28]  Yann Brenier,et al.  The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .

[29]  Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence , 1988 .

[30]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[31]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[32]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[33]  Jean-Paul Vila,et al.  High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws , 1988 .