Nonlinear small-gain theorems for discrete-time feedback systems and applications

We derive in this work a local nonlinear small-gain theorem in the framework of input-to-state stability for discrete time systems. Our primary objective is to show that, as in the continuous-time context, these discrete-time nonlinear small-gain theorems are very effective in stability analysis and synthesis for various classes of discrete-time control systems. Two converse Lyapunov theorems for discrete exponential stability are developed to assist these applications. New results in stability and stabilization presented in this paper are significant extensions of previous work by other authors (IEEE Trans. Automat. Control 38 (1993) 1398; 39 (1994) 2340; 33 (1988) 1082).

[1]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[2]  Jose B. Cruz,et al.  Feedback systems , 1971 .

[3]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[4]  J. L. Massera Contributions to Stability Theory , 1956 .

[5]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[8]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[9]  Ravi P. Agarwal,et al.  Difference equations and inequalities , 1992 .

[10]  C. Byrnes,et al.  Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..

[11]  A. Isidori,et al.  Asymptotic stabilization of minimum phase nonlinear systems , 1991 .

[12]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[13]  Zhong-Ping Jiang,et al.  A small-gain control method for nonlinear cascaded systems with dynamic uncertainties , 1997, IEEE Trans. Autom. Control..

[14]  J. Tsinias Versions of Sontag's “Input to state stability condition” and the global stabilizability problem , 1993 .

[15]  Alberto Isidori,et al.  Trends in Control , 1995 .

[16]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[17]  D. Nesic,et al.  Lyapunov based small-gain theorem for parameterized discrete-time interconnected ISS systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  J. Tsinias,et al.  Stabilization of nonlinear discrete-time systems using state detection , 1993, IEEE Trans. Autom. Control..

[19]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[20]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[21]  T. Nadzieja,et al.  Construction of a smooth Lyapunov function for an asymptotically stable set , 1990 .

[22]  A. Isidori Nonlinear Control Systems , 1985 .

[23]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[24]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[25]  Mario E. Magaña,et al.  Robust output feedback stabilization of discrete-time uncertain dynamical systems , 1988 .

[26]  P. Kokotovic,et al.  Global stabilization of partially linear composite systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[27]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[28]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .