Algorithms for Graph and Network Analysis: Clustering and Search of Motifs in Graphs

In this article we deal with problems that involve the analysis of topology in graphs modeling biological networks. In particular, we consider two important problems: (i) Network clustering, aiming at finding compact subgraphs inside the input graph in order to isolate molecular complexes, and (ii) searching for motifs, i.e., sub-structures repeated in the input network and presenting high significance (e.g., in terms of their frequency). We provide a compact overview of the main techniques proposed in the literature to solve these problems.

[1]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  U Alon,et al.  The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. , 2006, Journal of molecular biology.

[3]  R. F. Cancho,et al.  Topology of technology graphs: small world patterns in electronic circuits. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Anton J. Enright,et al.  Detection of functional modules from protein interaction networks , 2003, Proteins.

[5]  Clara Pizzuti,et al.  Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods , 2014, Bioinform..

[6]  Weixiong Zhang,et al.  Identifying network communities with a high resolution. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Aleksandar Stevanovic,et al.  GraphCrunch 2: Software tool for network modeling, alignment and clustering , 2011, BMC Bioinformatics.

[8]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[9]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[10]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[11]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[12]  Roded Sharan,et al.  Comparative analysis of protein networks , 2012, Commun. ACM.

[13]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[14]  A. Ruttenberg,et al.  Edge‐count probabilities for the identification of local protein communities and their organization , 2005, Proteins.

[15]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[16]  Falk Schreiber,et al.  MAVisto: a tool for the exploration of network motifs , 2005, Bioinform..

[17]  Luigi Palopoli,et al.  Asymmetric Comparison and Querying of Biological Networks , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[18]  Concettina Guerra,et al.  A review on models and algorithms for motif discovery in protein-protein interaction networks. , 2008, Briefings in functional genomics & proteomics.

[19]  Ambuj K. Singh,et al.  RRW: repeated random walks on genome-scale protein networks for local cluster discovery , 2009, BMC Bioinformatics.

[20]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Bollobás The evolution of random graphs , 1984 .

[22]  M. Samanta,et al.  Predicting protein functions from redundancies in large-scale protein interaction networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[24]  Juan Liu,et al.  Clustering Protein Interaction Data Through Chaotic Genetic Algorithm , 2006, SEAL.

[25]  E. Webb Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. , 1992 .

[26]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[27]  Clara Pizzuti,et al.  An evolutionary restricted neighborhood search clustering approach for PPI networks , 2014, Neurocomputing.

[28]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[29]  Sebastian Wernicke,et al.  Efficient Detection of Network Motifs , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[30]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[32]  Tin Wee Tan,et al.  In silico grouping of peptide/HLA class I complexes using structural interaction characteristics , 2007, Bioinform..

[33]  Alberto Apostolico,et al.  Finding 3D motifs in ribosomal RNA structures , 2009, Nucleic acids research.

[34]  Michael Lässig,et al.  Local graph alignment and motif search in biological networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Takeaki Uno,et al.  Enumeration of condition-dependent dense modules in protein interaction networks , 2009, 21st International Conference on Data Engineering Workshops (ICDEW'05).

[37]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[38]  Laxmi Parida,et al.  Irredundant tandem motifs , 2014, Theor. Comput. Sci..

[39]  菊池 重郎,et al.  大阪舎密局の再発見-続-蘭人教師"ハラタマ"住宅の追跡 , 1976 .

[40]  Chung-Yuan Huang,et al.  Mining Bridge and Brick Motifs From Complex Biological Networks for Functionally and Statistically Significant Discovery , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[42]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Cristina G. Fernandes,et al.  Motif Search in Graphs: Application to Metabolic Networks , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[44]  Andre Levchenko,et al.  Dynamic Properties of Network Motifs Contribute to Biological Network Organization , 2005, PLoS biology.

[45]  Laxmi Parida,et al.  Discovering Topological Motifs Using a Compact Notation , 2007, J. Comput. Biol..

[46]  Angelo Furfaro,et al.  2D Motif Basis Applied to the Classification of Digital Images , 2016, Comput. J..

[47]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[48]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[49]  Stefano Lonardi,et al.  Monotony of surprise and large-scale quest for unusual words. , 2003 .

[50]  Alberto Apostolico,et al.  Motif patterns in 2D , 2008, Theor. Comput. Sci..

[51]  Simona E. Rombo,et al.  Searching for repetitions in biological networks: methods, resources and tools , 2015, Briefings Bioinform..

[52]  Aidong Zhang,et al.  A novel functional module detection algorithm for protein-protein interaction networks , 2006, Algorithms for Molecular Biology.

[53]  Elena Marchiori,et al.  A methodology for detecting the orthology signal in a PPI network at a functional complex level , 2012, BMC Bioinformatics.

[54]  Renaud Lambiotte,et al.  Line graphs of weighted networks for overlapping communities , 2010 .

[55]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Vergassola,et al.  An evolutionary and functional assessment of regulatory network motifs , 2005, Genome Biology.

[57]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[58]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[59]  Shigehiko Kanaya,et al.  Development and implementation of an algorithm for detection of protein complexes in large interaction networks , 2006, BMC Bioinformatics.

[60]  Doheon Lee,et al.  Architecture of basic building blocks in protein and domain structural interaction networks , 2005, Bioinform..

[61]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[62]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[63]  Tijana Milenkovic,et al.  Graphlet-based edge clustering reveals pathogen-interacting proteins , 2012, Bioinform..

[64]  Robin Palotai,et al.  Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes and Predict Network Dynamics , 2009, PloS one.