Constraint handling procedure for multiobjective particle swarm optimization

In this paper, the proposed constrained multiobejctive particle swarm optimization (MOPSO) adopts the multiobjective constraint handling framework and includes the following design features: An infeasible global best archive to guide the infeasible particles towards feasible region(s); procedures to update the personal best archive are designed to encourage finding feasible regions and convergence towards the Pareto front; acceleration constants in the particle swarm optimization equation are adjusted during the search process to encourage finding more feasible particles or to search for better solutions; and mutation operators are adopted to encourage global and local searches. The simulation results indicate that the proposed algorithm is highly competitive in solving the benchmark problems.

[1]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[3]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[4]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[5]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[7]  Min Zhang,et al.  Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization , 2006, SEAL.

[8]  Liu Zhiming,et al.  Solving Constrained Optimization via a Modified Genetic Particle Swarm Optimization , 2008, First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008).

[9]  Hussein A. Abbass,et al.  An Evolutionary Algorithm for Constrained Multiobjective Optimization Problems , 2001 .

[10]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[11]  Isao Ono,et al.  Constraint-Handling Method for Multi-objective Function Optimization: Pareto Descent Repair Operator , 2007, EMO.

[12]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[13]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[14]  Jian Li,et al.  Solving constrained optimization via a modified genetic particle swarm optimization , 2008, e-Forensics '08.

[15]  Rainer Laur,et al.  Constrained Single-Objective Optimization Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Optimization , 2000, GECCO.

[17]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Xinghuo Yu,et al.  A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[20]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[23]  Gary G. Yen,et al.  Dynamic Population Size in PSO-based Multiobjective Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Khaled Rasheed,et al.  Constrained Multi-objective Optimization Using Steady State Genetic Algorithms , 2003, GECCO.

[25]  P. N. Suganthan,et al.  Multiobjective Differential Evolution with External Archive and Harmonic Distance-Based Diversity Measure , 2007 .

[26]  Gary G. Yen,et al.  Constraint handling in multi-objective evolutionary optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  David L. Cushman A Particle Swarm Approach to Constrained Optimization Informed by “ Global Worst ” , 2007 .

[28]  C. Coello,et al.  Multi-Objective Particle Swarm Optimizers : A Survey of the State-ofthe-Art , 2006 .

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[30]  Jürgen Branke,et al.  Empirical comparison of MOPSO methods - Guide selection and diversity preservation - , 2009, 2009 IEEE Congress on Evolutionary Computation.

[31]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..