Efficient Second Order Unconditionally Stable Schemes for a Phase Field Moving Contact Line Model Using an Invariant Energy Quadratization Approach

We consider the numerical approximations for a phase field model consisting of incompressible Navier--Stokes equations with a generalized Navier boundary condition, and the Cahn--Hilliard equation ...

[1]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[2]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[3]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[4]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[5]  Jinchao Xu,et al.  Phase Field Model of Thermo-Induced Marangoni Effects in the Mixtures and its Numerical Simulations with Mixed Finite Element Method , 2009 .

[6]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[7]  Lin Wang,et al.  On Efficient Second Order Stabilized Semi-implicit Schemes for the Cahn–Hilliard Phase-Field Equation , 2017, J. Sci. Comput..

[8]  Ricardo H. Nochetto,et al.  A diffuse interface model for two-phase ferrofluid flows , 2016, 1601.06824.

[9]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[10]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[11]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..

[12]  Daozhi Han,et al.  Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model , 2017, J. Comput. Phys..

[13]  Junseok Kim,et al.  Phase field modeling and simulation of three-phase flows , 2005 .

[14]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[15]  Min Gao,et al.  An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity , 2014, J. Comput. Phys..

[16]  Ping Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Suchuan Dong,et al.  On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows , 2012 .

[18]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[19]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[20]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[21]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[22]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[23]  Feng Chen,et al.  An efficient and energy stable scheme for a phase‐field model for the moving contact line problem , 2016 .

[24]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[25]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..

[26]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[27]  Xiaofeng Yang,et al.  Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method , 2017 .

[28]  Daozhi Han,et al.  Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows , 2017, J. Sci. Comput..

[29]  Jaemin Shin,et al.  An unconditionally stable numerical method for the viscous Cahn--Hilliard equation , 2014 .

[30]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[31]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[32]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[33]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[34]  Roland Glowinski,et al.  A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line , 2011, J. Comput. Phys..

[35]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[36]  Jie Shen,et al.  Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density , 2014, Journal of Scientific Computing.

[37]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[38]  Xiaofeng Yang,et al.  Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines , 2017 .

[39]  Jie Shen,et al.  A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios , 2012, J. Comput. Phys..

[40]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[41]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[42]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[43]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[44]  Xiaofeng Yang,et al.  Decoupled energy stable schemes for phase-field vesicle membrane model , 2015, J. Comput. Phys..

[45]  Xiaoming Wang,et al.  A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation , 2014, J. Comput. Phys..

[46]  Jie Shen,et al.  Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids , 2014, SIAM J. Sci. Comput..

[47]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[48]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[49]  Min Gao,et al.  A gradient stable scheme for a phase field model for the moving contact line problem , 2012, J. Comput. Phys..

[50]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[51]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[52]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[53]  Jie Shen,et al.  An Energetic Variational Formulation with Phase Field Methods for Interfacial Dynamics of Complex Fluids: Advantages and Challenges , 2005 .

[54]  Abner J. Salgado,et al.  A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines , 2013 .

[55]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[56]  Jie Shen,et al.  Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows , 2015, SIAM J. Numer. Anal..

[57]  Sébastian Minjeaud An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model , 2013 .

[58]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[59]  Qi Wang,et al.  Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations , 2011, J. Comput. Phys..

[60]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[61]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..