Numerical modeling of fluctuation phenomena in semiconductor devices

A method enabling numerical modeling of fluctuation phenomena in semiconductor devices is presented. The method is based on the assumption that fluctuations of generation–recombination processes and carrier mobility result in the fluctuations of carrier and ionized impurity concentrations. These, in turn, may be expressed by the fluctuations of the electrical potential and quasi-Fermi levels. Fluctuations of the electrical potential and quasi-Fermi-levels were calculated by solving the set of “transport equations for fluctuations” in which the fluctuations of generation–recombination processes (both thermal and optical) and fluctuations of mobility play roles of random source terms. The method enables the calculation of fluctuations of all physical quantities enclosed in a set of transport equations. The spatial distribution of the fluctuations of the electrical potential, electron concentration, and noise current density is shown. The noise spectrum in selected, cooled, long-wavelength HgCdTe photoresist...

[1]  C. V. Vliet,et al.  Electrical fluctuations and photoinduced current transients in CdxHg1−xTe long wavelength epilayers , 1999 .

[2]  R. Yadava,et al.  Hole scattering mechanisms in Hg1−xCdxTe , 1994 .

[3]  C. T. Elliott,et al.  Non-equilibrium modes of operation of narrow-gap semiconductor devices , 1990 .

[4]  B. Pellegrini On mobility-fluctuation origin of 1/f noise , 1986 .

[5]  R. Pratt,et al.  Minority‐carrier lifetime in doped and undoped n‐type CdxHg1−xTe , 1986 .

[6]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[7]  T Ashley,et al.  Non-Equilibrium Devices For Infrared Detection , 1985, Optics & Photonics.

[8]  T. Ashley,et al.  Nonequilibrium devices for infra-red detection , 1985 .

[9]  C. L. Jones,et al.  Minority carrier lifetime in n‐type Bridgman grown Hg1−xCdxTe , 1983 .

[10]  Peter Händel,et al.  Quantum approach to1fnoise , 1980 .

[11]  M. A. Kinch,et al.  0.1 eV HgCdTe photoconductive detector performance , 1977 .

[12]  M. A. Kinch,et al.  Geometrical enhancement of HgCdTe photoconductive detectors , 1977 .

[13]  B. Nag,et al.  Scattering mechanisms in Hg 1 − x Cd x Te , 1975 .

[14]  Peter Händel,et al.  1fNoise-An "Infrared" Phenomenon , 1975 .

[15]  B. Nag,et al.  Mobility of electrons in Hg1−xCdxTe , 1974 .

[16]  K. Yamaji Large anomaly of the diamagnetic susceptibility above the superconducting transition temperature , 1969 .

[17]  R. Williams Sensitivity limits of 0.1 eV intrinsic photoconductors , 1968 .

[18]  D. Long On generation-recombination noise in infrared detector materials , 1967 .

[19]  K. Kwack,et al.  Numerical simulations for HgCdTe related detectors , 1999 .

[20]  T. Ashley,et al.  A heterojunction minority carrier barrier for InSb devices , 1993 .

[21]  A. Rogalski,et al.  Performance of mercury cadmium telluride photoconductive detectors , 1991 .

[22]  C. V. Vliet,et al.  A survey of results and future prospects on quantum 1ƒf noise and 1ƒf noise in general , 1991 .

[23]  T. Kleinpenning,et al.  1/ f noise in p‐n junction diodes , 1985 .

[24]  Peter Händel,et al.  Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter , 1985 .

[25]  W B Lewis,et al.  Fluctuations in streams of thermal radiation , 1947 .