Long-term doxorubicin release from multiple stimuli-responsive hydrogels based on α-amino-acid residues.

[1]  G. Bardajee,et al.  Synthesis of a novel supermagnetic iron oxide nanocomposite hydrogel based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) onto salep for controlled release of drug. , 2014, Materials science & engineering. C, Materials for biological applications.

[2]  Samantha A. Meenach,et al.  Characterization of PEG–iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery , 2013, Journal of biomaterials science. Polymer edition.

[3]  Mark W. Dewhirst,et al.  CHAPTER 2:Materials Science and Engineering of the Low Temperature Sensitive Liposome (LTSL): Composition-Structure-Property Relationships That Underlie its Design and Performance , 2013 .

[4]  P. Decuzzi,et al.  Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles , 2013, PloS one.

[5]  B. del Bello,et al.  Cisplatin-Induced Apoptosis Inhibits Autophagy, Which Acts as a Pro-Survival Mechanism in Human Melanoma Cells , 2013, PloS one.

[6]  R. Barbucci,et al.  Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery. , 2012, Acta biomaterialia.

[7]  P. Krysiński,et al.  Photoinduced reactivity of doxorubicin: catalysis and degradation. , 2012, The journal of physical chemistry. A.

[8]  Stefania Lamponi,et al.  Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  O. Mykhaylyk,et al.  Magnetic field-controlled gene expression in encapsulated cells , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[10]  M. Casolaro,et al.  Multiple Stimuli-Responsive Hydrogels for Metal-Based Drug Therapy , 2012 .

[11]  O. Scherman,et al.  Triply triggered doxorubicin release from supramolecular nanocontainers. , 2012, Biomacromolecules.

[12]  M. Casolaro,et al.  Hydrogel containing L-valine residues as a platform for cisplatin chemotherapy. , 2011, Colloids and surfaces. B, Biointerfaces.

[13]  S. Che,et al.  Coordination Bonding-Based Mesoporous Silica for pH-Responsive Anticancer Drug Doxorubicin Delivery , 2011 .

[14]  R. Barbucci,et al.  A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains. Potential applications as a targeted drug delivery system , 2011 .

[15]  Sébastien Lecommandoux,et al.  A simple method to achieve high doxorubicin loading in biodegradable polymersomes. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[16]  M. Dadsetan,et al.  A stimuli-responsive hydrogel for doxorubicin delivery. , 2010, Biomaterials.

[17]  M. Jakupec,et al.  New platinum-oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. , 2010, Journal of inorganic biochemistry.

[18]  Yu Zhang,et al.  Magnetically Sensitive Alginate-Templated Polyelectrolyte Multilayer Microcapsules for Controlled Release of Doxorubicin , 2010 .

[19]  R. Ramanujan,et al.  Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery , 2010 .

[20]  A. Bajpai,et al.  Real time in vitro studies of doxorubicin release from PHEMA nanoparticles , 2009, Journal of nanobiotechnology.

[21]  R. Neufeld,et al.  Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. , 2009, Biomaterials.

[22]  A. Nogales,et al.  Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[23]  K. Kang,et al.  Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  P. Mozetic,et al.  Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery. , 2009, Biomacromolecules.

[25]  M. Casolaro,et al.  Cisplatin/hydrogel complex in cancer therapy. , 2009, Biomacromolecules.

[26]  J. Z. Hilt,et al.  Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[27]  A. Hoffman,et al.  Delivery of Doxorubicin from Biodegradable PEG Hydrogels Having Schiff Base Linkages† , 2007 .

[28]  Axel H. E. Müller,et al.  Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities , 2007 .

[29]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[30]  A. Casini,et al.  fac-{Ru(CO)3}2+-core complexes and design of metal-based drugs. synthesis, structure, and reactivity of Ru-thiazole derivative with serum proteins and absorption-release studies with acryloyl and silica hydrogels as carriers in physiological media. , 2007, Inorganic chemistry.

[31]  J. Hubbell,et al.  Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[32]  L. Gerweck,et al.  Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics , 2006, Molecular Cancer Therapeutics.

[33]  M. Casolaro,et al.  Vinyl polymers based on L-histidine residues. Part 2. Swelling and electric behavior of smart poly(ampholyte) hydrogels for biomedical applications. , 2006, Biomacromolecules.

[34]  E. Paccagnini,et al.  Stimuli-Responsive Polymers Based on l-Phenylalanine Residues: Protonation Thermodynamics of Free Polymers and Cross-Linked Hydrogels , 2005 .

[35]  Zonghuan Lu,et al.  Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  M. Casolaro,et al.  Vinyl polymers based on L-histidine residues. Part 1. The thermodynamics of poly(ampholyte)s in the free and in the cross-linked gel form. , 2004, Biomacromolecules.

[37]  M. Valentini,et al.  Role of caspases-3 and -7 in Apaf-1 proteolytic cleavage and degradation events during cisplatin-induced apoptosis in melanoma cells. , 2004, Experimental cell research.

[38]  Allan S Hoffman,et al.  Hydrogels for biomedical applications. , 2002, Advanced drug delivery reviews.

[39]  M. Casolaro Vinyl Polymers Containing L-Valine and L-Leucine Residues: Thermodynamic Behavior of Homopolymers and Copolymers with N-Isopropylacrylamide , 1995 .

[40]  M. Casolaro Thermodynamics of multiple stimuli-responsive polyelectrolytes with complexing ability towards the copper(II) ion☆ , 1994 .

[41]  A. Rich,et al.  Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. , 1990, Biochemistry.

[42]  Nicholas A. Peppas,et al.  A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs , 1987 .

[43]  Nicholas A. Peppas,et al.  DYNAMICALLY SWELLING HYDROGELS IN CONTROLLED RELEASE APPLICATIONS. , 1986 .

[44]  V. Barone,et al.  Effect of different shielding groups on the polyelectrolyte behavior of polyamines , 1983 .

[45]  M. Heskins,et al.  Solution Properties of Poly(N-isopropylacrylamide) , 1968 .

[46]  R. Duncan,et al.  Poly(amidoamine) conjugates containing doxorubicin bound via an acid-sensitive linker. , 2009, Macromolecular bioscience.

[47]  Dean-Mo Liu,et al.  Magnetic-sensitive silica nanospheres for controlled drug release. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[48]  V. Barone,et al.  Acid-base and metal ion complex formation properties of polymers containing amino acid residues , 1986 .