Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.

[1]  A. Manthiram,et al.  Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries , 2013 .

[2]  Feng Wu,et al.  Spinel/Layered Heterostructured Cathode Material for High‐Capacity and High‐Rate Li‐Ion Batteries , 2013, Advanced materials.

[3]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[4]  K. Amine,et al.  Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries , 2013 .

[5]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[6]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[7]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[8]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[9]  A. Manthiram,et al.  High-voltage, high-energy layered-spinel composite cathodes with superior cycle Life for lithium-ion batteries , 2012 .

[10]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[11]  Feng Wu,et al.  Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials , 2012 .

[12]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[13]  Jaephil Cho,et al.  Spinel‐Layered Core‐Shell Cathode Materials for Li‐Ion Batteries , 2011 .

[14]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[15]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[16]  Yang-Kook Sun,et al.  Role of surface coating on cathode materials for lithium-ion batteries , 2010 .

[17]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[18]  K. Amine,et al.  Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries , 2010 .

[19]  Christopher S. Johnson,et al.  Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries , 2009 .

[20]  Yang-Kook Sun,et al.  Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries , 2009 .

[21]  A. Manthiram,et al.  Effect of surface modifications on the layered solid solution cathodes (1 − z) Li[Li1/3Mn2/3]O2 − (z) Li[Mn0.5 − yNi0.5 − yCo2y]O2 , 2009 .

[22]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[23]  M. Armand,et al.  Building better batteries , 2008, Nature.

[24]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[25]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[26]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[27]  Christopher S. Johnson,et al.  Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .

[28]  C. Julien,et al.  Local structure of manganese oxides and lithium intercalates , 2005 .

[29]  Michael Thackeray,et al.  Lithium-ion batteries: An unexpected conductor. , 2002, Nature materials.

[30]  J. Kaplan,et al.  Biochemistry of Na,K-ATPase. , 2002, Annual review of biochemistry.

[31]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[32]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[33]  P. L. Jørgensen Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. , 1982, Biochimica et biophysica acta.