Delay-dependent stabilization of linear systems with time-varying state and input delays

The integral-inequality method is a new way of tackling the delay-dependent stabilization problem for a linear system with time-varying state and input delays: [email protected]?(t)=Ax(t)+A"1x(t-h"1(t))+B"1u(t)+B"2u(t-h"2(t)). In this paper, a new integral inequality for quadratic terms is first established. Then, it is used to obtain a new state- and input-delay-dependent criterion that ensures the stability of the closed-loop system with a memoryless state feedback controller. Finally, some numerical examples are presented to demonstrate that control systems designed based on the criterion are effective, even though neither (A,B"1) nor (A+A"1,B"1) is stabilizable.

[1]  A. E. Pearson,et al.  A multistage reduction technique for feedback stabilizing distributed time-lag systems , 1987, Autom..

[2]  Jong Hae Kim,et al.  Robust control for parameter uncertain delay systems in state and control input , 1996, Autom..

[3]  Hong Bae Park,et al.  Robust H ∞ Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty , 1996 .

[4]  K. Gu An integral inequality in the stability problem of time-delay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[5]  Z. Artstein Linear systems with delayed controls: A reduction , 1982 .

[6]  K. Gu A further refinement of discretized Lyapunov functional method for the stability of time-delay systems , 2001 .

[7]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[8]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[9]  Emilia Fridman,et al.  Parameter dependent stability and stabilization of uncertain time-delay systems , 2003, IEEE Trans. Autom. Control..

[10]  A. Pearson,et al.  Feedback stabilization of linear autonomous time lag systems , 1986 .

[11]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[12]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[13]  Qing-Long Han,et al.  Robust stability of uncertain delay-differential systems of neutral type , 2002, Autom..

[14]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[15]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[16]  Lihua Xie,et al.  Output feedback H∞ control of systems with parameter uncertainty , 1996 .

[17]  E. Fridman,et al.  Delay-dependent stability and H ∞ control: Constant and time-varying delays , 2003 .

[18]  Young Soo Moon,et al.  Delay-dependent robust stabilization of uncertain state-delayed systems , 2001 .

[19]  Myung Jin Chung,et al.  Memoryless stabilization of uncertain dynamic systems with time-varying delayed states and controls , 1995, Autom..

[20]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[21]  Wook Hyun Kwon,et al.  Feedback stabilization of linear systems with delayed control , 1980 .

[22]  Emilia Fridman,et al.  An improved stabilization method for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[23]  Huijun Gao,et al.  Comments and further results on "A descriptor system approach to H∞ control of linear time-delay systems" , 2003, IEEE Trans. Autom. Control..