Improving Force Field Accuracy by Training against Condensed-Phase Mixture Properties.

Developing a sufficiently accurate classical force field representation of molecules is key to realizing the full potential of molecular simulations as a route to gaining a fundamental insight into a broad spectrum of chemical and biological phenomena. This is only possible, however, if the many complex interactions between molecules of different species in the system are accurately captured by the model. Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained against densities and enthalpies of vaporization of pure (single-component) systems, with occasional usage of hydration free energies. In this study, we demonstrate how including physical property data of binary mixtures can better inform these parameters, encoding more information about the underlying physics of the system in complex chemical mixtures. To demonstrate this, we retrain a select number of Lennard-Jones parameters describing the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization of pure liquid systems and assess the performance of each of these combinations. We show that retraining against the mixture data improves the force field's ability to reproduce mixture properties, including solvation free energies, correcting some systematic errors that exist when training vdW interactions against properties of pure systems only.

[1]  John Chodera,et al.  Open Force Field Evaluator: An Automated, Efficient, and Scalable Framework for the Estimation of Physical Properties from Molecular Simulation. , 2021, Journal of chemical theory and computation.

[2]  S. Weerasinghe,et al.  Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. , 2021, Journal of chemical theory and computation.

[3]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[4]  Michael R. Shirts,et al.  Development and Benchmarking of Open Force Field v1.0.0-the Parsley Small-Molecule Force Field. , 2020, Journal of chemical theory and computation.

[5]  E. A. Müller,et al.  Employing SAFT Coarse-Grained Force Fields for the Molecular Simulation of Thermodynamic and Transport Properties of CO2–n-Alkane Mixtures , 2020, Journal of Chemical & Engineering Data.

[6]  Niel M. Henriksen,et al.  Data-Driven Mapping of Gas-Phase Quantum Calculations to General Force Field Lennard-Jones Parameters. , 2020, Journal of chemical theory and computation.

[7]  Arnold T. Hagler,et al.  Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics , 2018, Journal of Computer-Aided Molecular Design.

[8]  Pnina Dauber-Osguthorpe,et al.  Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there? , 2018, Journal of Computer-Aided Molecular Design.

[9]  David L Mobley,et al.  Escaping Atom Types in Force Fields Using Direct Chemical Perception. , 2018, Journal of chemical theory and computation.

[10]  A. Galindo,et al.  SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions. , 2018, The journal of physical chemistry. B.

[11]  Kresten Lindorff-Larsen,et al.  Biophysical experiments and biomolecular simulations: A perfect match? , 2018, Science.

[12]  David L. Mobley,et al.  Open Force Field Consortium: Escaping atom types using direct chemical perception with SMIRNOFF v0.1 , 2018, bioRxiv.

[13]  C. Rowley,et al.  Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model. , 2017, Journal of chemical theory and computation.

[14]  Katarzyna B. Koziara,et al.  Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach. , 2017, Journal of chemical theory and computation.

[15]  K. Tochigi,et al.  Separation Effects of Renewable Solvent Ethyl Lactate on the Vapor–Liquid Equilibria of the Methanol + Dimethyl Carbonate Azeotropic System , 2017 .

[16]  Åsmund Ervik,et al.  Prediction of the water/oil interfacial tension from molecular simulations using the coarse-grained SAFT-γ Mie force field , 2017, Fluid Phase Equilibria.

[17]  Joseph Gomes,et al.  Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. , 2017, The journal of physical chemistry. B.

[18]  V. Sharma,et al.  Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-Dioxane, and Cyclic Ketones , 2017 .

[19]  Pascal T. Merz,et al.  A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. , 2016, Journal of chemical theory and computation.

[20]  J. González,et al.  Thermodynamics of amide + ketone mixtures. 1. Volumetric, speed of sound and refractive index data for N,N-dimethylformamide + 2-alkanone systems at several temperatures , 2016 .

[21]  Á. Domínguez,et al.  Application of the ionic liquid tributylmethylammonium bis(trifluoromethylsulfonyl)imide as solvent for the extraction of benzene from octane and decane at T = 298.15 K and atmospheric pressure , 2016 .

[22]  Jonah Z. Vilseck,et al.  Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning , 2016, Journal of chemical theory and computation.

[23]  John D Chodera,et al.  A Simple Method for Automated Equilibration Detection in Molecular Simulations. , 2016, Journal of chemical theory and computation.

[24]  George Jackson,et al.  SAFT- γ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes , 2016 .

[25]  M. Artal,et al.  Vapour–liquid equilibrium at T = 308.15 K for binary systems: Dibromomethane + n-heptane, bromotrichloromethane + n-heptane, bromotrichloromethane + dibromomethane, bromotrichloromethane + bromochloromethane and dibromomethane + bromochloromethane. Experimental data and modelling , 2015 .

[26]  R. Gardas,et al.  Apparent molar properties of benzyldimethylammonium based protic ionic liquids in water and ethanol at different temperatures , 2015 .

[27]  Vijay S Pande,et al.  Building Force Fields: An Automatic, Systematic, and Reproducible Approach. , 2014, The journal of physical chemistry letters.

[28]  Michael K. Gilson,et al.  The SAMPL4 hydration challenge: evaluation of partial charge sets with explicit-water molecular dynamics simulations , 2014, Journal of Computer-Aided Molecular Design.

[29]  J. B. Montón,et al.  Liquid–liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: Measurements and correlation at different temperatures , 2014 .

[30]  Kai Wang,et al.  Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics , 2013, Journal of Computer-Aided Molecular Design.

[31]  D. Case,et al.  Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization. , 2013, The journal of physical chemistry. B.

[32]  H. Uslu,et al.  (Liquid + liquid) equilibrium data of (water + phosphoric acid + solvents) systems at T = (308.2 and 318.2) K , 2012 .

[33]  O. Tafat-Igoudjilene,et al.  Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure , 2012 .

[34]  V. Dohnal,et al.  Thermal and Volumetric Properties of Four Aqueous Aroma Compounds at Infinite Dilution , 2012 .

[35]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[36]  E. A. Ploetz,et al.  A Kirkwood-Buff force field for the aromatic amino acids. , 2011, Physical chemistry chemical physics : PCCP.

[37]  S. Ranjbar,et al.  Densities and Viscosities of Binary and Ternary Mixtures of (Nitrobenzene + 1-Bromobutane), (1-Bromobutane + Methylcyclohexane), (Nitrobenzene + Methylcyclohexane), and (Methylcyclohexane + Nitrobenzene + 1-Bromobutane) from (293.15 to 308.15) K , 2011 .

[38]  S. Verevkin,et al.  Vapor Pressures and Enthalpies of Vaporization of a Series of the Symmetric Linear n-Alkyl Esters of Dicarboxylic Acids , 2011 .

[39]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. , 2010, The journal of physical chemistry. B.

[40]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. , 2010, The journal of physical chemistry. B.

[41]  Wei-dong Yan,et al.  Excess molar enthalpies of diethyl malonate+ (1-butanol, 2-methyl-1-propanol, 1-pentanol, n -heptane, and ethyl acetate) at T = (288.2, 298.2, 313.2, 328.2, 338.2, and 348.2K) and p =101.3kPa , 2010 .

[42]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[43]  Nikolaos Bentenitis,et al.  Developing Force Fields from the Microscopic Structure of Solutions , 2010 .

[44]  Lifeng Zhao,et al.  Enthalpies of mixing predicted using molecular dynamics simulations and OPLS force field , 2010 .

[45]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[46]  D. Drăgoescu,et al.  (Vapour+liquid) equilibria and excess Gibbs free energies of (cyclohexanone+1-chlorobutane and+1,1,1-trichloroethane) binary mixtures at temperatures from (298.15 to 318.15)K , 2009 .

[47]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[48]  L. Morávková,et al.  Volumetric behaviour of binary liquid systems composed of toluene, isooctane, and methyl tert-butyl ether at temperatures from (298.15 to 328.15) K , 2009 .

[49]  A. Mariano,et al.  Isobaric Vapor−Liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31 kPa† , 2009 .

[50]  M. Burguet,et al.  Study of liquid–liquid equilibrium of the systems isobutyl acetate + acetic acid + water and isobutyl alcohol + acetic acid + water at different temperatures , 2008 .

[51]  S. Aparicio,et al.  Liquid–liquid equilibria of lactam containing binary systems , 2008 .

[52]  P. Volpe,et al.  Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine–Flory–Patterson theory , 2008 .

[53]  E. Zorȩbski,et al.  Densities, Excess Molar Volumes, and Isobaric Thermal Expansibilities for 1,2-Ethanediol + 1-Butanol, or 1-Hexanol, or 1-Octanol in the Temperature Range from (293.15 to 313.15) K , 2008 .

[54]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[55]  D. Drăgoescu,et al.  Isothermal (vapour + liquid) equilibria and excess Gibbs free energies in some binary (cyclopentanone + chloroalkane) mixtures at temperatures from 298.15 K to 318.15 K , 2007 .

[56]  A. Villares,et al.  Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane , 2007 .

[57]  D. Dalmazzone,et al.  A second order group contribution method for the prediction of critical temperatures and enthalpies of vaporization of organic compounds , 2006 .

[58]  Masahiro Kato,et al.  Volumetric Behavior and Saturated Pressure for Carbon Dioxide + Ethyl Acetate at a Temperature of 313.15 K , 2006 .

[59]  S. Stein,et al.  XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML) (IUPAC Recommendations 2006) , 2006 .

[60]  G. Kamath,et al.  Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures. , 2005, The journal of physical chemistry. B.

[61]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[62]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[63]  S. Weerasinghe,et al.  A Kirkwood–Buff derived force field for sodium chloride in water , 2003 .

[64]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard‐Jones parameters for polar‐neutral compounds , 2002, J. Comput. Chem..

[65]  J. L. Legido,et al.  Relative permittivity increments for {xCH3OH + (1 − x)CH3OCH2(CH2OCH2)3CH2OCH3} fromT = 283.15 K toT = 323.15 K , 2001 .

[66]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[67]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[68]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[69]  D. W. Scott Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[70]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[71]  J. Haile,et al.  The influence of unlike molecule interaction parameters on liquid mixture excess properties , 1989 .

[72]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[73]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[74]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[75]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[76]  V. Hynek,et al.  Enthalpies of vaporization and cohesive energies for seven aliphatic ketones , 1983 .

[77]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[78]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[79]  K. Bystroem,et al.  Enthalpies of Formation of Some Cyclic 1,3- and 1,4-Di- and Poly-ethers: Thermochemical Strain in the -O-C-O- and -O-C-C-O- Groups (Bildungswärmen von -378 bis -879 bzw. -338 bis -8OO kJ/mol für 1,3- und 1,4-Dioxan, 1,3,6-Trioxa-cyclo , 1982 .

[80]  V. Svoboda,et al.  Enthalpies of vaporization and cohesive energies for a group of aliphatic ethers , 1980 .

[81]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[82]  G. Wolf Thermochemische Untersuchungen an cyclischen Ketonen , 1972 .

[83]  H. J. Bernstein,et al.  The heat of dimerization of some carboxylic acids in the vapour phase determined by a spectroscopic method , 1969 .

[84]  F. Mopsik,et al.  Dielectric Constant of N-Hexane as a Function of Temperature, Pressure, and Density. , 1967, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[85]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[86]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[87]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[88]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[89]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[90]  E. Salonen,et al.  Biomolecular Simulations : Methods and Protocols - Methods in Molecular Biology , 2012 .

[91]  J. Ortega,et al.  Thermodynamic study of (alkyl esters + α,ω -alkyl dihalides) IV: HmEandVmE for 25 binary mixtures {xCu−1H2u−1CO2CH3 + (1 − x)α,ω-BrCH2(CH2)v−2CH2Br}, where u = 1 to 5, α = 1 and v = ω = 2 to 6 , 2007 .

[92]  Wenqian Wu,et al.  Excess Molar Volumes and Surface Tensions of Xylene with 2-Propanol or 2-Methyl-2-propanol at 298.15 K , 2003 .

[93]  Robert P. Eganhouse,et al.  The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study , 2001 .

[94]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard-Jones parameters , 1998, J. Comput. Chem..

[95]  H. V. Kehiaian,et al.  Enthalpies of vaporization of organic compounds : a critical review and data compilation , 1985 .

[96]  V. Svoboda,et al.  Enthalpies of vaporization of aliphatic C5 and C6 alcohols , 1985 .

[97]  M. Månsson,et al.  Enthalpies of formation of some cyclic 1,3- and 1,4-di- and poly-ethers: thermochemical strain in the –O–C–O– and –O–C–C–O– groups , 1982 .

[98]  Jiří Pick,et al.  Heats of vaporization of alkyl esters of formic, acetic and propionic acids , 1980 .

[99]  V. Svoboda,et al.  Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method , 1979 .

[100]  V. Hynek,et al.  Heats of vaporization of alkyl esters of formic acid , 1976 .

[101]  A. Shimizu,et al.  Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids. , 1970 .

[102]  C. Djerassi,et al.  A Heat of Vaporization Calorimeter for Work at 25 degrees C and for Small Amounts of Substances. , 1966 .

[103]  H. A. Skinner,et al.  Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran , 1961 .