Adaptive synchronization and channel parameter estimation using an extended Kalman filter

Unified modeling and estimation of the MD (multiplicative distortion) in finite-alphabet digital communication systems is presented. A simple form of MD is the carrier phase exp(j theta ), which has to be estimated and compensated for in a coherent receiver. A more general case with fading must, however, allow for amplitude as well as phase variations of the MD. The authors assume a state-variable model for the MD and generally obtain a nonlinear estimation problem with additional randomly varying system parameters such as received signal power, frequency offset, and Doppler spread. An extended Kalman filter is then applied as a near-optimal solution to the adaptive MD and channel parameter estimation problem. Examples are given to show the use and some advantages of this scheme. >

[1]  A. McBride,et al.  On Optimum Sampled-Data FM Demodulation , 1973, IEEE Trans. Commun..

[2]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[3]  S. Qureshi,et al.  Adaptive equalization , 1982, Proceedings of the IEEE.

[4]  Seymour Stein,et al.  Fading Channel Issues in System Engineering , 1987, IEEE J. Sel. Areas Commun..

[5]  Donald L. Snyder,et al.  The state-variable approach to analog communication theory , 1968, IEEE Trans. Inf. Theory.

[6]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[7]  Demetrios G. Lainiotis,et al.  Optimal Estimation in the Presence of Unknown Parameters , 1969, IEEE Trans. Syst. Sci. Cybern..

[8]  G. Pasternack,et al.  Analysis and synthesis of a digital phase-locked loop for FM demodulation , 1968 .

[9]  V. Kroupa,et al.  Noise Properties of PLL Systems , 1982, IEEE Trans. Commun..

[10]  S. Gupta,et al.  Quasi-Optimum Digital Phase-Locked Loops , 1973, IEEE Trans. Commun..

[11]  Heinrich Meyr,et al.  A systematic approach to carrier recovery and detection of digitally phase modulated signals of fading channels , 1989, IEEE Trans. Commun..

[12]  A. Jazwinski Filtering for nonlinear dynamical systems , 1966 .

[13]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[14]  S. Gupta,et al.  The Digital Phase-Locked Loop as a Near-Optimum FM Demodulator , 1972, IEEE Trans. Commun..

[15]  John B. Moore,et al.  A Gaussian Sum Approach to Phase and Frequency Estimation , 1977, IEEE Trans. Commun..

[16]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[17]  S. C. Gupta,et al.  Discrete-time demodulation of angle-modulated analog signals transmitted over fading channels , 1975, Inf. Sci..

[18]  F. Gardner Hangup in Phase-Lock Loops , 1977, IEEE Trans. Commun..

[19]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[20]  J. J. Kappl Nonlinear Estimation Via Kalman Filtering , 1971, IEEE Transactions on Aerospace and Electronic Systems.