Extruder path generation for Curved Layer Fused Deposition Modeling

Extruder path generation for a new rapid prototyping technique named ''Curved Layer Fused Deposition Modeling'' (CLFDM) has been presented. The prototyping technique employs deposition of material in curved layers in contrast to flat layers as in Fused Deposition Modeling (FDM). The proposed method would be particularly advantageous over FDM in the manufacturing of thin, curved parts (shells) by reduction of stair-step effect, increase in strength and reduction in the number of layers. The criteria for the generation of tool paths for CLFDM are proper orientation of filaments and appropriate bonding between adjacent filaments in same layer and in successive layers.

[1]  Giancarlo Amati,et al.  A multi-level filtering approach for fairing planar cubic B-spline curves , 2007, Comput. Aided Geom. Des..

[2]  Allan J. Lightman,et al.  Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites , 1999 .

[3]  Rida T. Farouki,et al.  Exact offset procedures for simple solids , 1985, Comput. Aided Geom. Des..

[4]  Debasish Dutta,et al.  An accurate slicing procedure for layered manufacturing , 1996, Comput. Aided Des..

[5]  Zhu Hu,et al.  Determination of optimal build orientation for hybrid rapid-prototyping , 2002 .

[6]  Sanjay G. Dhande,et al.  Real time adaptive slicing for fused deposition modelling , 2003 .

[7]  P. Wright,et al.  Anisotropic material properties of fused deposition modeling ABS , 2002 .

[8]  Han Tong Loh,et al.  Considerations and selection of optimal orientation for different rapid prototyping systems , 1999 .

[9]  Peter A. Jacobs,et al.  Adaptive slicing with sloping layer surfaces , 1997 .

[10]  Seth Allen,et al.  On the Computation Of Part Orientation Using Support Structures in Layered Manufacturing , 1994 .

[11]  Jan Helge Bøhn,et al.  Adaptive slicing using stepwise uniform refinement , 1996 .

[12]  Selçuk Güçeri,et al.  Mechanical characterization of parts fabricated using fused deposition modeling , 2003 .

[13]  W. Zhong,et al.  Short fiber reinforced composites for fused deposition modeling , 2001 .

[14]  B. G. Prakash,et al.  Computing non-self-intersecting offsets of NURBS surfaces , 2002, Comput. Aided Des..

[15]  B. G. Prakash,et al.  Computing offsets of trimmed NURBS surfaces , 2003, Comput. Aided Des..

[16]  Zhengyi Yang,et al.  Layer-based machining: Recent development and support structure design , 2002 .

[17]  Y. Toshev,et al.  MEDICAL RAPID PROTOTYPING APPLICATIONS AND METHODS , 2005 .

[18]  J. Winder,et al.  Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. , 2005, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[19]  Hsi-Yung Feng,et al.  Constant scallop-height tool path generation for three-axis sculptured surface machining , 2002, Comput. Aided Des..

[20]  George A. Brown,et al.  Rapid Prototyping: The Future of Trauma Surgery? , 2003, The Journal of bone and joint surgery. American volume.

[21]  Duc Truong Pham,et al.  Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling , 2001 .

[22]  Weiyin Ma,et al.  NURBS-based adaptive slicing for efficient rapid prototyping , 2004, Comput. Aided Des..

[23]  B. G. Prakash,et al.  Computing constant offsets of a NURBS B-Rep , 2003, Comput. Aided Des..

[24]  Michael Kerschbaumer,et al.  Tool path generation for 3D laser cladding using adaptive slicing technology , 2005 .

[25]  Les A. Piegl,et al.  Computing offsets of NURBS curves and surfaces , 1999, Comput. Aided Des..

[26]  Debasish Dutta,et al.  Region-based adaptive slicing , 1999, Comput. Aided Des..

[27]  André Dolenc,et al.  Slicing procedures for layered manufacturing techniques , 1994, Comput. Aided Des..

[28]  Gershon Elber,et al.  Toolpath generation for freeform surface models , 1994, Comput. Aided Des..

[29]  Caroline Sunyong Lee,et al.  Measurement of anisotropic compressive strength of rapid prototyping parts , 2007 .